Classe: 1ES2

DM2

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

Index

Activité 2 page 68.	
87 page 21.	1
88 page 21	

Activité 2 page 68

Soit une fonction polynôme du second degré. $x \mapsto ax^2 + bx + c$, où a, b et c sont des réels (a non nul).

$$\Delta = b^2 - 4ac$$
.

$$f(x) = 3x^2 + 2x - 5$$
; $g(x) = -9x^2 + 13x + 10$; $h(x) = 6x^2 + 5x$; $i(x) = 5x^2 + x + 3$; $j(x) = 2x^2 - 8x + 8$
N: nombre de points d'intersection de la parabole représentant la fonction avec l'axe des abscisses.

	а	b	С	Δ	N
f(x)	3	2	- 5	49	2
g(x)	-9	13	10	529	2
h (x)	6	5	0	25	2
<i>i</i> (<i>x</i>)	5	1	3	-59	0
j(x)	2	-8	8	0	1

Observations:

Il semble que le nombre de solutions ait un lien avec le signe de Δ .

Si $\Delta < 0$ alors N = 0

Si $\Delta = 0$ alors N = 1

Si $\Delta > 0$ alors N = 2.

On verra en cours :

 Δ s'appelle le discriminant de l'expression du second degré.

Il permet de connaître le nombre de solutions à l'équation du second degré et de déterminer ces solutions.

87 page 21

Le 1^{er} janvier 2010, la personne place une somme sur un compte rémunéré à 2 ,5 % par an.

- 1) Le coefficient multiplicateur correspondant à un taux de 2,5 % est : CM = 1,025
- 2) Chaque année la somme est multipliée par 1,025,

donc, au bout de n années, elle sera multipliée par $1,025^n$

Pour obtenir la somme finale, on fera : Somme initiale \times 1,025ⁿ = Somme finale

Algorithme: (voir page 254 du livre)

Commentaires:

Quels sont les nombres nécessaires

T est le taux (ici : 2,5),

N est le nombre d'années,

S est la somme placée au départ,

« Le savoir n'est jamais inutile. Seulement il se trouve qu'il faut apprendre un tas de choses inutiles avant de comprendre les choses utiles »

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

C est le coefficient multiplicateur demandé

Début de l'algorithme.

Variables: (en algorithme, une variable est une mémoire qui contient des valeurs modifiables).

T, N, S, C sont des nombres

Entrée:

Saisir T, N, S

Traitement

C prend la valeur $(1 + T/100)^N$ (calcul du coefficient multiplicateur)

S = C * S (calcul de la somme au bout de n années)

Sortie

Afficher S

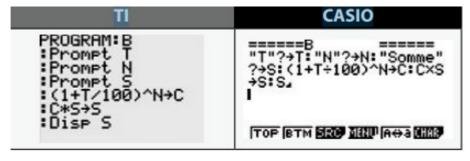
Fin de l'algorithme

Programmer:

Sur TI, faire PRGM, NOUV

Donner un nom (le clavier est alors par défaut en alphanumérique).

Les fonctions utiles dans le mode "programmation "s'obtiennent en faisant "PRGM"


CTL: les instructions du type If, For,

E/S : les instructions " entrée/sortie " (Prompt, Disp, ...)

la flèche → pour mettre en mémoire est obtenue avec STO

Sur Casio, mettre en mode programmation avec l'icône PRGM du menu.

? pour une entrée, le petit triangle noir pour afficher, les " " pour nommer (sans avoir une variable).

Avec Algobox:

DM2
Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

```
VARIABLES
1
2
     T EST DU TYPE NOMBRE
3
     N EST DU TYPE NOMBRE
      S EST DU TYPE NOMBRE
5
      C EST DU TYPE NOMBRE
  DEBUT ALGORITHME
6
7
     LIRE T
8
      LIRE N
9
     LIRE S
10
      C PREND_LA_VALEUR pow(1+T/100, N)
      S PREND_LA_VALEUR S*C
11
     AFFICHER "la somme au bout de N années vaut"
12
13
     AFFICHER S
     AFFICHER "Le coefficient multiplicateur vaut"
14
15
     AFFICHER C
16 FIN_ALGORITHME
```

```
Résultats
   ***Algorithme lancé***
   Entrer T: 2,5
   Entrer N: 20
   Entrer S: 1
   la somme au bout de N années vaut
   2.6532977
   Le coefficient multiplicateur vaut
   2.6532977
Console
 ***Algorithme lancé***
Entrer T : 2,5
Entrer N : 20
la somme au bout de N années vaut
2.6532977
Le coefficient multiplicateur vaut
2.6532977
 **Algorithme terminé***
```

4. Application:

Si T = 2.5 et n = 20, on a $1.025^{20} \approx 1.6386$.

L'augmentation est de plus de 63 %, donc plus de 60 %!

88 page 21

s est le salaire de Monsieur.

- 1. Madame gagne 15 % de moins que Monsieur : Salaire de Madame $t = s \times 0.85$.
- 2. Madame a une promotion et le salaire de Madame après la promotion :

 $t' = s \times 0.85 \times 1.15 = s \times 0.9775$ (hélas, ce n'est pas 1..., 15 % de hausse ne compense pas 15 % de baisse).

3. Salaire du couple avant la promotion de Madame : $s + s \times 0.85 = s \times 1.85$.

Classe: 1ES2 DM2

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

- 4. Salaire du couple après la promotion de Madame : $s + s \times 0.9775 = s \times 1.9775$.
- 5. Coefficient multiplicateur pour calculer l'évolution de la somme des salaires : CM :

$$CM = \frac{s \times 1,9775}{s \times 0,9775} \approx 1,0689.$$

Ce qui donne à 0,1 près par excès une augmentation du salaire du couple de 6,9 %