Exercice 1 Médiane, quartiles, diagramme en boîtes

Ce tableau donne les revenus salariaux annuels moyens en 2008, en euros, des hommes et des femmes dans quinze départements où ces revenus étaient les plus élevés (source : INSEE).

Département	Homme	Femme
Bas-Rhin	22 316	16 203
Bouches-du-Rhône	22 180	16 393
Essonne	26 240	19 603
Guyane	21 133	19 093
Haute-Garonne	23 469	16 818
Hauts-de-Seine	34 511	24 558
Isère	23 036	16 178
Oise	22 909	17 010
Paris	33 909	24 726
Rhône	23 741	17 212
Seine-et-Marne	24 231	17 999
Territoire de Belfort	22 690	15 645
Val-de-Marne	25 282	20 118
Val-d'Oise	24 178	18 712
Yvelines	32 959	21 402

Réécrire chacune des deux séries des revenus salariaux des hommes et des femmes en les ordonnant dans l'ordre croissant des revenus.

Hommes		Femmes		
Guyane	21133	Territoire de Belfort	15645	
Bouches-du-Rhône	22180	Isère	16178	
Bas-Rhin	22316	Bas-Rhin	16203	
Territoire de Belfort	22690	Bouches-du- Rhône	16393	
Oise	22909	Haute-Garonne	16818	
Isère	23036	Oise	17010	
Haute-Garonne	23469	Rhône	17212	
Rhône	23741	Seine-et-Marne	17999	
Val-d'Oise	24178	Val-d'Oise	18712	

Ce que l'on conçoit bien s'énonce clairement, Et les mots pour le dire arrivent aisément. Boileau

1/5 DS4_corrige.odt 05/12/14

Classe: 1ES	DS4	lundi 8 décembre 2014		
		Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie		

Seine-et-Marne	24231	Guyane	19093
Val-de-Marne	25282	Essonne	19603
Essonne	26240	Val-de-Marne	20118
Yvelines	32959	Yvelines	21402
Paris	33909	Hauts-de-Seine	24558
Hauts-de-Seine	34511	Paris	24726

Déterminer leur médiane, leurs premier et troisième quartiles.

L'effectif total étant 15, on a : $\frac{15}{4}$ = 3,75, d'où, Q_1 est la 4ème valeur de la série.

la valeur centrale est la 8ème valeur de la série.

$$\frac{15\times3}{4}$$
 = 11,25, d'où, Q₃ est la 12ème valeur de la série.

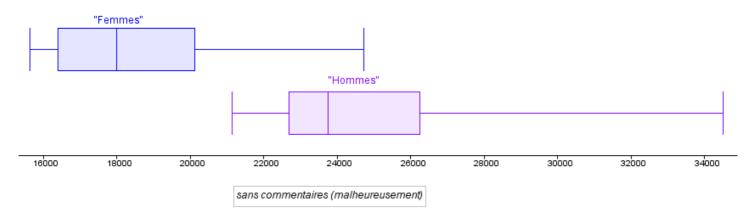
Série " Hommes " : $Q_1 = 22690$, Me = 23741, $Q_3 = 26240$

Série "Femmes": $Q_1 = 16393$, Me = 17999, $Q_3 = 20118$

Sur un même graphique construire le diagramme en boîte de chacune des deux séries.

On place les minimums, maximums, quartiles et médianes de chaque série

revenus salariaux annuels moyens en 2008 , en euros, des hommes et des femmes dans quinze départements où ces revenus étaient les plus élevés



Exercice 2 Fonctions, variations

- 1) Ouestion de cours.
- a) Dresser le tableau de variations de la fonction cube.

Ce que l'on conçoit bien s'énonce clairement, Et les mots pour le dire arrivent aisément. Boileau

2/5

DS4_corrige.odt

05/12/14

X	$-\infty$		$+\infty$
x^3		/	

b) Dresser le tableau de variations de la fonction racine carrée.

χ	0	+∞
\sqrt{x}	0	A

3) Une fonction.

On consider la fonction f définie sur $[0; +\infty[$ par $f(x) = 2 - 3\sqrt{x}$

a) Compléter par un symbole d'inégalité, en justifiant chaque étape.

$0 \le a \le b$	Choix de deux réels sur [0 ; +∞[
$\sqrt{a} < \sqrt{b}$	car, la fonction racine carrée est strictement croissante sur $[0; +\infty[$		
$-3 \times \sqrt{a} > -3 \times \sqrt{b}$	car, en multipliant par -3 strictement négatif, l'ordre s'inverse		
$2 - 3 \times \sqrt{a} > 2 - 3 \times \sqrt{b}$	car, en ajoutant 2 aux deux membres de l'inégalité, l'ordre est conservé		

b) En déduire le sens de variations de la fonction f sur $[0; +\infty[$

On a montré : si $0 \le a \le b$ alors f(a) > f(b).

Par conséquent, la fonction f est strictement décroissante sur $[0; +\infty[$

4) Une autre fonction.

Après avoir décomposé en une succession d'opérations permettant son analyse, étudier la variation de la function $g: x \mapsto 5 \times \frac{1}{x} - 9$ sur l'intervalle $]0; +\infty[$

0 < a < b	Choix de deux réels sur]0 ; +∞[
$\frac{1}{a} > \frac{1}{b}$	car, la fonction inverse est strictement décroissante sur]0 ; +∞[
$5 \times \frac{1}{a} > 5 \times \frac{1}{b}$	car, en multipliant par 5 strictement positif, l'ordre est conservé				
$5 \times \frac{1}{a} - 9 > 5 \times \frac{1}{b} - 9$	car, en ajoutant (-9) aux deux membres de l'inégalité, l'ordre est conservé				

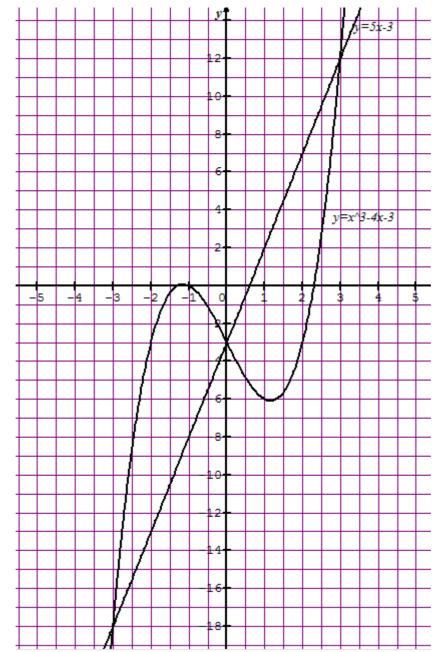
On a montré : si 0 < a < b alors g(a) > g(b).

Par conséquent, la fonction g est strictement décroissante sur]0; $+\infty[$

Exercice 3 Calculatrice, lecture graphique, inéquations

On considère les deux expressions suivantes : $f(x) = x^3 - 4x - 3$ et g(x) = 5x - 3

- 1) À l'aide de la calculatrice, représenter les fonctions f et g sur l'intervalle [-5; 5].
- a) Dessiner ce que vous voyez sur l'écran de la calculatrice sans oublier de légender le schéma.



b) Déterminer graphiquement les solutions de l'inéquation f(x) > g(x).

f(x) > g(x) lorsque $x \in [-3; 0] \cup [3; 5]$

(On lit les abscisses des points de C_f dont l'ordonnée est supérieure à celle de C_g).

2) Résoudre **par le calcul** l'inéquation suivante : f(x) > g(x).

$$x^3 - 4x - 3 - (5x - 3) = x^3 - 9x = x(x^2 - 9) = x(x - 3)(x + 3)$$

Classe: 1ES	DS4	lundi 8 décembre 2014		
		Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Ale		

X	-5		-3		0		3		5
x		_		_	0	+		+	
x-3		_		_		_	0	+	
x+3		_	0			+		+	
x(x-3)(x+3)		_	0	+	0	_	0	+	

Conclusion: $f(x) - g(x) > 0 \Leftrightarrow f(x) > g(x) \text{ pour } x \in]-3; 0[\cup]3; 5]$

Exercice 4 Entretien du second degré

Une parabole \mathcal{P} a pour équation $y = -2x^2 + bx + 3$.

1) Sachant que le point A(4 ; 3) est un point de \mathcal{P} , déterminer le nombre b.

Puisque
$$A \in \mathcal{P}$$
, on sait : $-2*4^2+4*b+3=3$, d'où, $b=\frac{32}{4}=8$

On a donc : $y = -2x^2 + 8x + 3$ est une équation de \mathcal{P} .

2) Justifier que la parabole \mathscr{P} coupe l'axe des abscisses en deux points distincts et calculer leur abscisse (*valeur exacte et non valeur approchée*).

On a donc : $y = -2x^2 + 8x + 3$

On cherche y = 0, soit : $-2x^2 + 8x + 3 = 0$

Comme $\Delta = 8^2 - 4 \times (-2) \times 3 = 88 = 4 \times 22$ est strictement positif, l'équation $-2x^2 + 8x + 3 = 0$ a deux solutions qui sont les abscisses des points d'intersection de \mathscr{P} et de l'axe des abscisses.

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-8 - 2\sqrt{22}}{2 \times (-2)} = \frac{4 + \sqrt{22}}{2}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-8 + 2\sqrt{22}}{2 \times (-2)} = \frac{4 - \sqrt{22}}{2}$

Ce que l'on conçoit bien s'énonce clairement, Et les mots pour le dire arrivent aisément. Boileau

5/5

DS4 corrige.odt

05/12/14