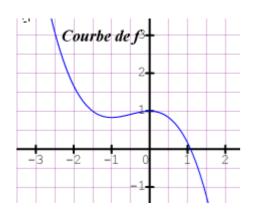
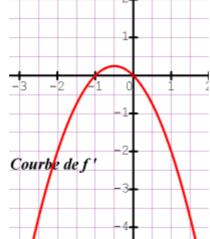
Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

Index

27 page 118	1
31 page 118.	2
36 page 119	2
41 page 119	4
43 page 119.	_
45 page 119.	
46 page 119	0

27 page 118





1) Lecture graphique des variations de f:

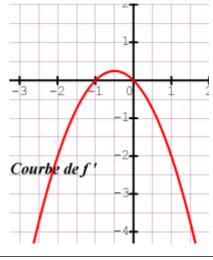
X	-2,5	-1	0	1,5
f(x)	3	≈ 0,9	1	≈ -1,25

2) Signe de f'(x) déduit du tableau précédent

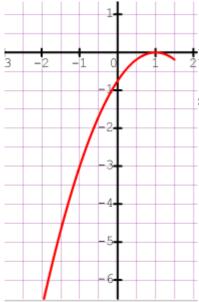
X	-2,5		-1		0		1,5
f(x)	3		≈ 0,9	A	1 \	*	≈ -1,25
signe $f'(x)$		-	0	+	0	-	

3) la courbe possible est la courbe A.

On a bien : f'(-1) = f'(0) = 0, f'(x) < 0 sur [-2,5; -1[et sur]0; 1,5] et f'(x) > 0 sur]-1; 0[



Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie



La courbe proposée en B ne peut pas être la courbe de f'.

la fonction représentée ainsi est négative, donc, la fonction f serait décroissante sur [-2,5;1,5]

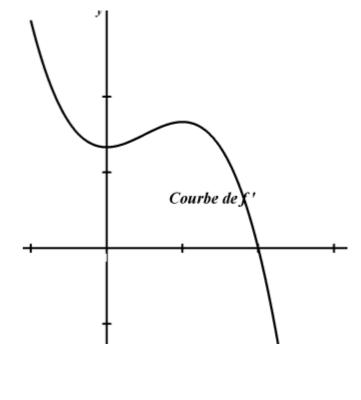
31 page 118

1) Lecture graphique du signe de f'

X	-1		2		3
signe f'(x)		+	0	_	

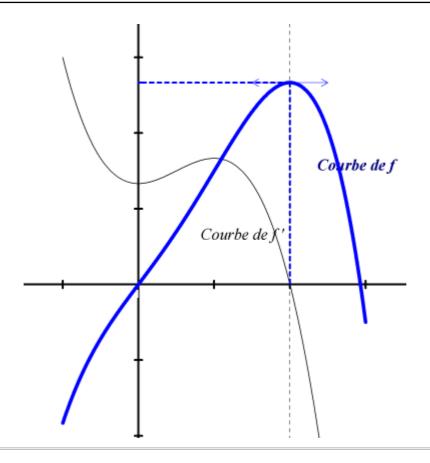
2) Tableau de variations de la fonction *f* déduit du tableau précédent.

X	-1 2	3
signe $f'(x)$	+ 0 –	
Variations de <i>f</i>		



Exemple de courbe possible :

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie



36 page 119

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3 - x^2$ f, étant un polynôme défini sur \mathbb{R} , est dérivable sur \mathbb{R} , et, pour tout x réel, $f'(x) = 3x^2 - 2x = x(3x - 2)$.

Étude du signe de la dérivée :

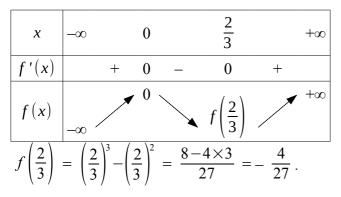
X	∞		0		$\frac{2}{3}$		+∞
X		_	0	+	:	+	
3x-2		_	:	_	0	+	
x(3x-2)		+	0	_	0	+	

Étude du sens de variation de la fonction f:

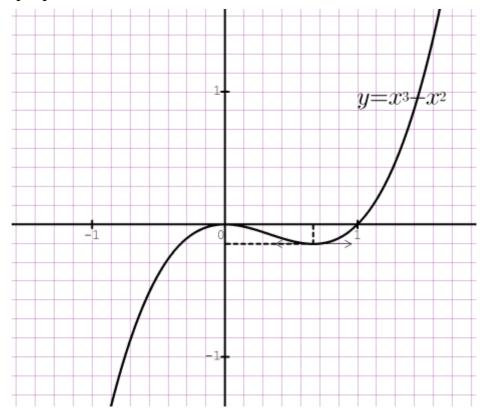
 $\operatorname{Comme} f'(x) \geqslant 0 \text{ sur } \left] - \infty; 0 \right] \text{ et sur } \left[\frac{2}{3}; + \infty \right[\text{ , la fonction } f \text{ est croissante sur } \right] - \infty; 0 \right] \text{ et sur } \left[\frac{2}{3}; + \infty \right[\text{ , la fonction } f \text{ est croissante sur } \right] - \infty; 0 \right]$

Comme $f'(x) \le 0$ sur $\left[0; \frac{2}{3}\right]$, la fonction f est décroissante sur $\left[0; \frac{2}{3}\right]$.

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie



Représentation graphique :



41 page 119

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^4 - x^3$ f, étant un polynôme défini sur \mathbb{R} , est dérivable sur \mathbb{R} , et, pour tout x réel, $f'(x) = 4x^3 - 3x^2 = x^2(4x - 3)$.

Étude du signe de la dérivée

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

Х		0		<u>3</u>		+∞
x^2	+	0	+	:	+	
4x - 3	_	:	_	0	+	
x(3x-2)	_	0	_	0	+	

Étude du sens de variation de la fonction f:

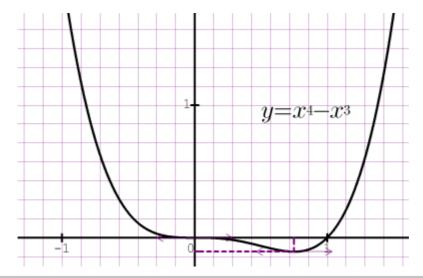
Comme $f'(x) \ge 0$ sur $\left[\frac{3}{4}; +\infty\right[$, la fonction f est croissante sur $\left[\frac{3}{4}; +\infty\right[$,

Comme $f'(x) \le 0$ sur $\left] -\infty; \frac{3}{4} \right]$, la fonction f est décroissante sur $\left] -\infty; \frac{3}{4} \right]$.

X	∞		0		$\frac{3}{4}$		+∞
f'(x)		-	0	_	0	+	
f(x)	+∞ ,		0	_	$f\left(\frac{3}{4}\right)$,	+∞
(2)	12	\4 /	2 \3	01	27×4	-	7

$$f\left(\frac{3}{4}\right) = \left(\frac{3}{4}\right)^4 - \left(\frac{3}{4}\right)^3 = \frac{81 - 27 \times 4}{256} = -\frac{27}{256}$$

Représentation graphique :



43 page 119

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^3 + x^2 - 1$ et C_f sa courbe représentative dans un repère orthogonal d'unités 1 cm sur l'axe des abscisses et 0,5 cm sur l'axe des ordonnées.

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

1 a) f, étant un polynôme défini sur \mathbb{R} , est dérivable sur \mathbb{R} .

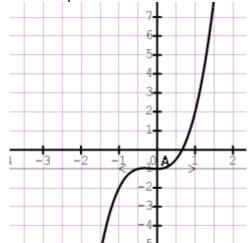
$$f'(x) = 6x^2 + 2x = 2x(3x + 1)$$

b) Le signe de f'(x) permet de déterminer le sens de variations de f.

X		$\frac{-1}{3}$		0		+∞
x	_		_		+	
3x + 1	_		+		+	
f'(x)	+	0	_	0	+	
f(x)		$f\left(\frac{-1}{3}\right)$		f(0)	1	+∞

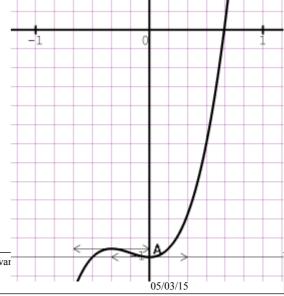
$$f\left(\frac{-1}{3}\right) = 2\left(\frac{-1}{3}\right)^3 + \left(\frac{-1}{3}\right)^2 - 1 = \frac{-2+3-27}{27} = -\frac{26}{27} \text{ et } f(0) = -1$$

- 2) le coefficient directeur de la tangente T à C_f au point A(0; 1) est égal à f'(0) = 0.
- 3) Construction
- respecter l'énoncé unités : 1 cm en abscisses et 0,5 cm en ordonnée
- Placer le point A et sa tangente T (tangente parallèle à l'axe des abscisses).
- Placer le point de coordonnées $\left(-\frac{1}{3}; -\frac{26}{27}\right)$ et sa tangente parallèle à l'axe des abscisses.
- Déterminer quelques points supplémentaires par un tableau de valeurs



Remarques : le choix des unités donne l'impression d'une courbe horizontale ...

En changeant d'unités



« Le savoir n'est jamais inutile. Seulement il se trouve qu'il faut apprendre un tas de choses inutiles avar

45 page 119

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{3}x^3 - 3x^2 + 9x$.

1) Déterminer le sens de variation de f.

Point méthode :

On calcule la dérivée de f.

On détermine le signe de f'(x) selon les valeurs de x.

On applique la propriété fondamentale : signe de la dérivée et variation de fonctions.

Application à l'exercice :

f, étant un polynôme défini sur \mathbb{R} , est dérivable sur \mathbb{R} .

Pour tout x réel,
$$f'(x) = \frac{1}{3} \times 3x^2 - 3 \times 2x + 9 = x^2 - 6x + 9 = (x - 3)^2$$

Par conséquent, la dérivée s'annule en 3, et est positive (un carré est toujours positif et nul).

La fonction f est donc strictement croissante sur \mathbb{R} .

Synthèse dans le tableau de variations :

X		3	$+\infty$
f'(x)	+	+	
f(x)		9	

2) Équation de la tangente T à C_f au point d'abscisse 0.

Le coefficient directeur de T est f'(0) = 9.

Le point de coordonnées (0; f(0)) est un point de T. Or, f(0) = 0,

une équation de T est donc : y = 9x.

3) La position de T par rapport à C_f est donnée par l'étude du signe de la différence : f(x) - 9x.

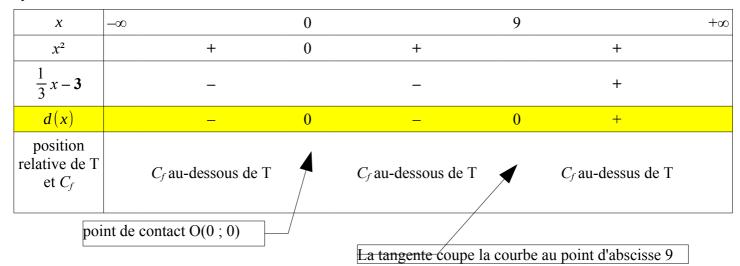
On pose
$$d(x) = f(x) - 9x = \frac{1}{3}x^3 - 3x^2 + 9x - 9x = \frac{1}{3}x^3 - 3x^2 = x^2(\frac{1}{3}x - 3).$$

Comme $x^2 \ge 0$, le signe de d(x) est celui de $\frac{1}{3}x - 3$ (expression du premier degré).

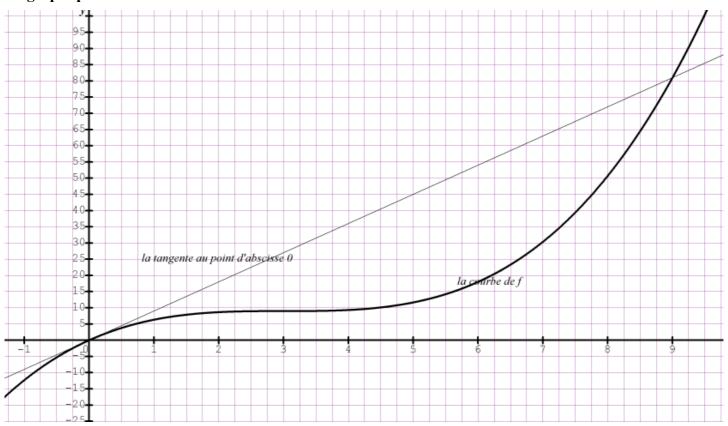
Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

 $\frac{1}{3}x - 3 \ge 0$ si et seulement si $x \ge 9$.

Synthèse dans un tableau :



Le graphique:



46 page 119

Soit la fonction f définie sur]0; $+\infty[$ par $f(x) = \frac{3x-1}{2x}$.

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

On pose u(x) = 3x - 1 et v(x) = 2x.

f est le quotient de deux fonctions affines u et v définies et dérivables sur]0; $+\infty[$ et $v(x) \neq 0$.

$$u(x) = 3x - 1$$
 et $v(x) = 2x$

$$u'(x) = 3$$
 et $v'(x) = 2$

Comme
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$
, on obtient, pour tout $x \neq 0$, $f'(x) = \frac{3 \times (2x) - 2(3x - 1)}{(2x)^2} = \frac{2}{4x^2} = \frac{1}{2x^2}$.

Comme $\frac{1}{2x^2}$ est strictement positif sur]0; + ∞ [, la fonction f est strictement croissante sur cet intervalle.

X	0	+∞					
f'(x)	+						
f(x)		3 2					
							
	1						
	-1 0 1 -1 -1	2	3 4	5	6	7	8 ,
	-2-						