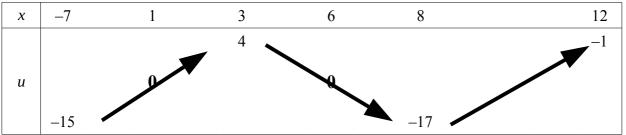
S2	DS4 9 dé		4
Nom :	Prénom :	Ce qui est affirmé sans preuve peut être nié sans preuve. Et	ıclide d'Alexandr
	<i>Exercice 1 Logique</i> uadrilatère <i>ABCD</i> .	4 points	
ciproqu		nel on donne l'implication (I), en écrivant la contraposée (CR) de (R), et, en indiquant si elles sont vraies ou fausses (a	
		Énoncé	/rai-Faux
(I)	Si les diagonales [AC] et [BL	D] sont de même longueur alors le quadrilatère <i>ABCD</i> est un rectangle.	
(C)			
(R)			
(CR)			
BCD est	nne la figure suivante avec les int-il un rectangle ? oposition avez-vous utilisée pour	2.05 2.05	***
		aleurs absolues et les racines carrées 5 points	
) Écrire	sans les barres . de valeur abso		
) Écrire	sans les barres . de valeur abso π = b) $\sqrt{3}$ –	$\sqrt{5} = \dots$	

2) Résoudre les équations et inéquations suivantes : (n'oubliez pas de conclure ... en donnant l'ensemble des solutions).

a) $\sqrt{x} \le 4$

b)
$$\sqrt{x-1} \ge 3$$

c) |x-2|=3


d)
$$|2x + 1| = -1$$

e)
$$|2x + 1| \le 4$$

1S2 DS4 9 décembre 2014

Exercice 3 les fonctions de la forme \sqrt{u} , $\frac{1}{u}$. 4 points

On considère une fonction u définie sur [-7; 12] dont on connaît le tableau de variations et quelques valeurs (présentes dans ce tableau) u(-7) = -15, u(3) = 4, u(8) = -17, u(12) = -1, u(1) = u(6) = 0.

- a) Donner l'ensemble de définition et les variations de la fonction $f = \sqrt{u}$.
- b) Donner l'ensemble de définition et les variations de la fonction $g = \frac{1}{n}$.

Exercice 4 lecture graphique : Nombre dérivé et tangente. 4 points

Sur la représentation graphique de la page 3 les droites tracées sont les tangentes aux points A, B, C d'abscisses respectives 1; -3; 2,5.

(Les croix sur le quadrillage représentent des points sur les tangentes pour faciliter la lecture graphique)

- 1) Par lecture graphique donner les nombres dérivés f'(1), f'(-3), f'(2,5)
- 2) On sait que f'(0) = -2.

Tracer la tangente au point d'abscisse 0, et,

déterminer une équation de cette tangente sachant que l'équation de la courbe est $y = \frac{1}{3}x^3 - 2x - \frac{4}{3}$

Exercice 5 Calculs d'un nombre dérivé

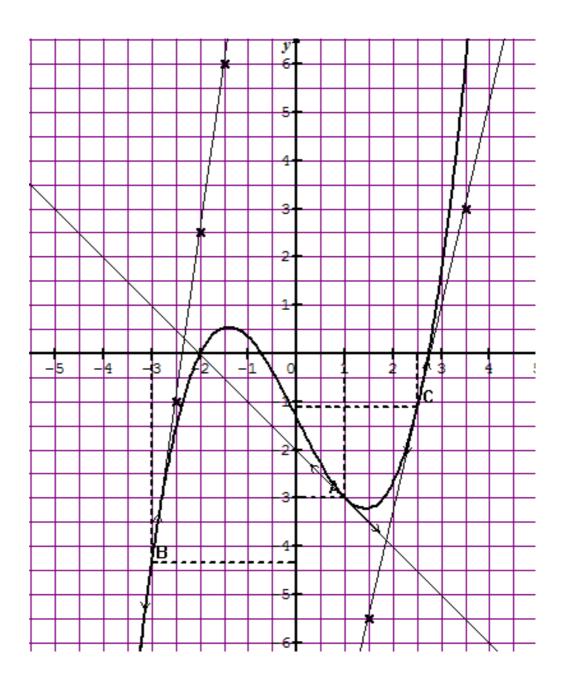
3 points

On considère la fonction f définie sur $[1 ; +\infty[$ par $f(x) = 2\sqrt{x-1}$.

h est un réel non nul et supérieur à −4.

- 1) Calculer f(5+h)-f(5) en fonction de h, puis montrer que $\frac{f(5+h)-f(5)}{h}=\frac{4}{2\sqrt{4+h}+4}$
- 2) En déduire le nombre dérive f'(5)

À noter sur votre agenda :


DM5 à rendre le mardi 16 décembre 2015.

52 page 65, 106 page 71; 34 page 276

.S2	DS4	9 décembre 2014
T	T /	

Nom:.....Prénom: Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

Graphique pour l'exercice 4

