Index

Activité de synthèse : fonction et suites ...

Objectif : créer des liens entre les propriétés des fonctions et des suites : variations, comportement à l'infini

Partie A/: Étude d'une fonction

Soit f la fonction définie par $f(x) = \sqrt{4x+5}$.

1) Déterminer l'ensemble de définition de f.

$$D_f = \left[-\frac{5}{4}; +\infty \right] \tag{4x+5} \ge 0$$

2) Étudier le sens de variations de f.

Une méthode:

La fonction affine $x \mapsto 4x + 5$ est strictement croissante sur $\left[-\frac{5}{4}; +\infty \right[$, suivie de la fonction $\sqrt{}$ strictement croissante sur $\left[0; +\infty \right[$, d'où, f est strictement croissante sur $\left[-\frac{5}{4}; +\infty \right[$.

Une autre méthode:

f est dérivable sur $\left] \frac{-5}{4}; +\infty \right[$ et la dérivée de f est $f'(x) = \frac{4}{2\sqrt{4x+5}}$ qui est strictement positive sur $\left] \frac{-5}{4}; +\infty \right[$,

d'où, f est strictement croissante sur $\left[-\frac{5}{4}; +\infty\right]$.

3) Résoudre l'équation f(x) = x.

$$\sqrt{4x+5} = x$$
 équivaut à
$$\begin{cases} x \ge 0 \\ 4x+5 = x^2 \end{cases}$$
.

L'équation $4x + 5 = x^2$ du second degré a deux solutions dans \mathbb{R} , -1 et 5.

Comme -1 < 0 et 5 > 0, l'équation f(x) = x a pour unique solution : 5

4) Tracer la courbe C_f représentative de f et la droite Δ d'équation y = x dans un repère orthonormal d'unité

Classe: 1S

Fonction, suites, programmation (Tant que ...)

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

graphique 2 cm. (Prendre une page entière dans le sens de la longueur).

Interpréter graphiquement le résultat du 3°)

Comme f(5) = 5, le point A(5; 5) est le point d'intersection de C_f et de Δ .

5) Montrer que si $0 \le a \le 5$ alors $0 \le f(a) \le 5$.

f étant strictement croissante sur [0; 5], si $0 \le a \le 5$ alors $f(0) \le f(a) \le f(5)$.

Or, $f(0) = \sqrt{5}$ qui est positif et f(5) = 5.

Par conséquent : si $0 \le a \le 5$ alors $0 \le f(a) \le 5$.

Montrer que si $a \ge 5$ alors $f(a) \ge 5$.

f étant strictement croissante sur $[5; +\infty[$, si $a \ge 5$ alors $f(a) \ge f(5)$.

f(5) = 5.

si $a \ge 5$ alors $f(a) \ge 5$.

Partie B/: des suites

f, étant la fonction étudiée à la partie A/, on définit la suite (u_n) , pour $a \ge 0$ par : $\begin{cases} u_0 = a \\ u_{n+1} = f(u_n) \end{cases}$

1) Cas où a = 0.

Calculer les valeurs approchées des premiers termes de (u_n) .

Conjecturer la variation de (u_n) et sa limite quand n tend vers $+\infty$.

Programmation rapide à la calculatrice :

0 entrer

 $\sqrt{(4 \times rep + 5)}$ entrer, entrer, entrer,

il semble que la suite (u_n) soit strictement croissante et converge vers 5.

2) Cas où a = 10.

Calculer les valeurs approchées des premiers termes de (u_n) .

Conjecturer la variation de (u_n) et sa limite quand n tend vers $+\infty$.

Programmation rapide à la calculatrice :

10 entrer

 $\sqrt{(4 \times rep + 5)}$ entrer, entrer, entrer,

il semble que la suite (u_n) soit strictement décroissante et converge vers 5.

3) Démontrer les propositions suivantes :

Si, il existe un $n \in \mathbb{N}$ tel que $u_n < u_{n+1}$, alors $u_{n+1} < u_{n+2}$

Si, il existe un $n \in \mathbb{N}$ tel que $u_n > u_{n+1}$, alors $u_{n+1} > u_{n+2}$

Quelle(s) conjecture(s) est (sont) ainsi vérifiée(s)?

$\mathbf{SI} \ u_n < u_{n+1}$		$SI u_n > u_{n+1}$
en appliquant f strictement croissante sur D_f on conserve l'ordre		
$ALORS f(u_n) < f(u_{n+1})$		$ALORS f(u_n) > f(u_{n+1})$
d'où : $u_{n+1} < u_{n+2}$	Par définition de la suite (u_n) , $f(u_n)$ = u_{n+1} et $f(u_{n+1}) = u_{n+2}$	$d'où u_{n+1} > u_{n+2}$

Or, lorsque $u_0 = 0$, $u_1 = \sqrt{5}$, donc, $u_0 < u_1$.

On en déduit : $u_1 < u_2$, puis, $u_2 < u_3$, puis, $u_3 < u_4$

La suite (u_n) de premier terme $u_0 = 0$ est strictement croissante.

Lorsque $u_0 = 10$, $u_1 = \sqrt{45} = 3\sqrt{5}$, donc, $u_0 > u_1$.

On en déduit : $u_1 > u_2$, puis, $u_2 > u_3$, puis, $u_3 > u_4$

La suite (u_n) de premier terme $u_0 = 10$ est strictement décroissante.

4) À l'aide d'un programme utilisant la boucle "TANT QUE", déterminer la valeur minimale de n_0 telle que $|u_n - 5| < 10^{-3}$ lorsque a = 0, puis lorsque a = 10.

Remplacer 10^{-3} par 10^{-6} , puis par 10^{-12}

Quelle(s) conjecture(s) est (sont) ainsi vérifiée(s) ?

```
VARIABLES
   —u EST_DU_TYPE NOMBRE
     -n EST_DU_TYPE NOMBRE
   Le EST_DU_TYPE NOMBRE
DEBUT ALGORITHME
   //on demande le premier indice
     -AFFICHER "indice de départ"
     -//on demande la valeur du premier terme
    -AFFICHER "le premier terme est:"
     -//on demande l'écart entre u(n) et la limite suppposée
     -AFFICHER "l'écart est:"
    LIRE e
     //on a une condition d'arrêt (un seuil), on introduit une boucle TANT QUE
  TANT QUE (abs(u-5)>e) FAIRE
      -DEBUT_TANT_QUE
        -//on écrit la relation de récurrence
        u PREND_LA_VALEUR sqrt(4*u+5)
       —//on compte le nombre de passage (ce qui donne l'indice)
       -n PREND_LA_VALEUR n+1
      FIN_TANT_QUE
     -//on affiche le plus petit entier n tel que abs(u-5)<=e
     -AFFICHER "Dès que n est supérieur ou égal à "
     -AFFICHER n
  FIN ALGORITHME
```

```
***Algorithme lancé***
indice de départ
Entrer n : 0
le premier terme est:
Entrer u : 0
l'écart est:
Entrer e : pow(10,-3)
Dès que n est supérieur ou égal à 10
***Algorithme terminé***
```

```
***Algorithme lancé***
indice de départ
Entrer n : 0
le premier terme est:
Entrer u : 0
l'écart est:
Entrer e : pow(10,-12)
Dès que n est supérieur ou égal à 33
***Algorithme terminé***
```

```
***Algorithme lancé***
indice de départ
Entrer n : 0
le premier terme est:
Entrer u : 0
l'écart est:
Entrer e : pow(10,-6)
Dès que n est supérieur ou égal à 18
***Algorithme terminé***
```

```
***Algorithme lancé***
indice de départ
Entrer n : 0
le premier terme est:
Entrer u : 10
l'écart est:
Entrer e : pow(10,-3)
Dès que n est supérieur ou égal à 10
***Algorithme terminé***
```

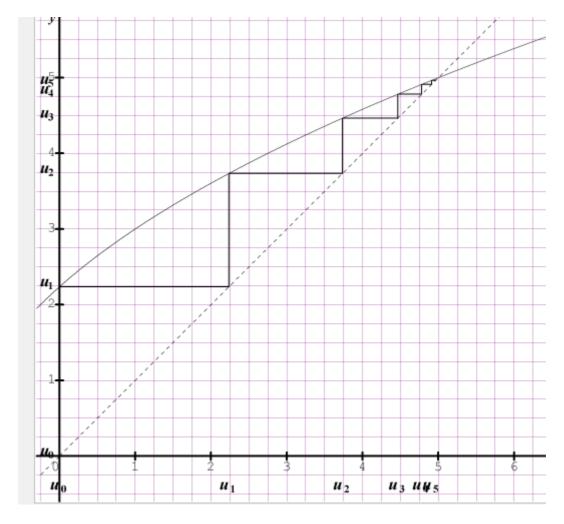
```
Classe: 1S Fonction, suites, programmation (Tant que ...)
```

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

```
***Algorithme lancé***
indice de départ
Entrer n : 0
le premier terme est:
Entrer u : 10
l'écart est:
Entrer e : pow(10,-6)
Dès que n est supérieur ou égal à 17
***Algorithme terminé***
```

```
***Algorithme lancé***
indice de départ
Entrer n : 0
le premier terme est:
Entrer u : 10
l'écart est:
Entrer e : pow(10,-12)
Dès que n est supérieur ou égal à 32
***Algorithme terminé***
```

5) Représenter les premiers des suites du B1/ et du B2/ sur le graphique du A4/



Classe: 1S Fonction, suites, programmation (Tant que ...)

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

