Index

Prerequis	1
I- Une nouvelle fonction : racine carrée.	
I-1- Définition	
I-1-1- Un rappel:	2
I-1-2- définition de la fonction racine carrée.	2
I-2- Variation	2
Une méthode	2
Une technique (à retenir) de calcul avec les.	2
Conséquence:	
Propriété :	<u>2</u>
I-3- Courbe représentative.	
I-3-1- Tableau de valeurs.	2
I-3-2 Graphique	2
Remarques:	2
I-4- Positions relatives de courbes (méthode générale à comprendre).	3
Applications:	3
Propriété : ordre de x, x², et	3
II- Une nouvelle fonction : valeur absolue.	
II-1- Définition de la valeur absolue d'un nombre et premières propriétés	3
II-1-1- définition.	<u>3</u>
exemples:	3
II-1-2- Propriétés	
Remarques:	3
II-2- Définition de la fonction valeur absolue.	<u>4</u>
II-3- Variation.	<u>4</u>
II-4- Courbe représentative.	<u>4</u>
III- quelques opérations sur les fonctions.	<u>4</u>
III-1. Les fonctions $u + \lambda$ où $\lambda \in \mathbb{R}$.	<u>4</u>
III-2. Les fonctions λu où $\lambda \in \mathbb{R}^*$	4
III-3. Les fonctions 1/u.	4
III-4. Les fonctions	<u>5</u>
III-5- et autres	
IV- Quelques rappels et compléments	
IV- 1 Une fonction numérique.	
IV- 2- Variation : qu'est-ce ?	
IV-3 et des fonctions qui " se suivent ". (Opération nouvelle : composition de fonctions)	6

<u>Prérequis</u>

- fonctions de référence vues en seconde
- variations de fonctions : définitions

utilisations

- relations d'ordre

Étude de fonctions

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

I- Une nouvelle fonction : racine carrée

I-1- Définition .

I-1-1- Un rappel:

Soit A un nombre réel positif ou nul (c'est-à-dire : $A \ge 0$)

Il existe un et un seul réel B positif ou nul (c-à-d. $B \ge 0$) tel que $B^2 = A$.

Ce réel B est appelé racine carrée de A et est notée \sqrt{A} .

On peut résumer ainsi :

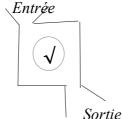
$$B = \sqrt{A} \iff (B \ge 0 \text{ et } B^2 = A)$$

I-1-2- définition de la fonction racine carrée

La fonction racine carrée est la fonction définie sur $[0; +\infty[$ par $: x \mapsto \sqrt{x}$.

Illustration: on entre un nombre **positif** "Truc"

on " appuie " sur le bouton $\sqrt{}$



il ressort le nombre **positif** " Machin " qui élevé au carré vaut " Truc "

I-2- Variation

Une méthode

Pour étudier les variations d'une fonction, on compare l'ordre des images à celui des antécédents.

Ici : on choisit deux antécédents $0 \le a < b$.

on cherche l'ordre de \sqrt{a} et \sqrt{b} en cherchant le signe de la différence $\sqrt{b} - \sqrt{a}$

Une technique (à retenir) de calcul avec les $\sqrt{}$

Développer $(\sqrt{b} - \sqrt{a})(\sqrt{b} + \sqrt{a}) = \dots$

(voir encadre page 48 du livre)

Conséquence :

Déduire de ce qui précède que $\sqrt{b} - \sqrt{a}$ et b - a sont de même signe.

Que peut-on conclure des variations de la fonction racine carrée ?

Propriété:

Faire la synthèse dans un tableau de variations.

I-3- Courbe représentative

I-3-1- Tableau de valeurs

Compléter:

x	0	0,25	1	•••	•••
\sqrt{x}					

I-3-2 Graphique

En utilisant le tableau de valeurs, faire la représentation graphique dans un repère $(O; \vec{i}, \vec{j})$.

Remarques:

La courbe est une demi-parabole d'équation $y = \sqrt{x}$.

Dans un repère orthonormé, elle peut s'obtenir par symétrie d'axe y = x à partir de la parabole d'équation $y = x^2$

09/10/14

avec $x \ge 0$. (La démonstration sera faite en exercice).

I-4- Positions relatives de courbes (méthode générale à comprendre)

Objectif: Comment étudier la position des courbes représentatives de deux fonctions f et g?

Méthode: Supposer deux courbes C_f et C_g .

Pour une abscisse x, placer deux points M et N sur chacune des courbes C_f et C_g .

Donner les ordonnées de ces points.

et en déduire une méthode pour positionner les courbes.

Applications:

Tracer dans un même repère les courbes représentatives sur $[0; +\infty[$ des fonctions $x \mapsto x; x \mapsto x^2; x \mapsto \sqrt{x}$, $x \mapsto 1$

et, pour
$$x > 0, x \mapsto \frac{1}{x}$$
.

Par lecture graphique, classer les nombres x, x^2, \sqrt{x} , 1, $\frac{1}{x}$.

Démontrer les résultats lus sur le graphique.

Propriété: ordre de x, x^2 , \sqrt{x} et $\frac{1}{x}$.

.....(propriété importante : savoir la retrouver) Énoncer la propriété :

II- Une nouvelle fonction : valeur absolue

II-1- Définition de la valeur absolue d'un nombre et premières propriétés.

II-1-1- définition

Soit x un réel.

La valeur absolue de x, notée |x|, est définie par : $|x| = \begin{cases} -x & \text{si } x \le 0 \\ x & \text{si } x \ge 0 \end{cases}$

Autrement dit, lorsque le nombre est positif, sa valeur absolue est le nombre lui-même

lorsque le nombre est négatif, sa valeur absolue est son opposé.

exemples:

$$|10-2| =$$

$$|2-10| =$$

$$|\pi - \sqrt{2}| =$$

$$|\sqrt{5}-3| =$$

x étant un réel,

$$|x - 1| =$$

$$|1 - x| =$$

$$|x + 1| =$$

$$|-x-1| =$$

Réduire les expressions selon les valeurs de x: |x + 2| + |3 - x| =

$$5|x-4|-3|2x+1| = \dots$$

II-1-2- Propriétés

Pour tout réel x, $|x| \ge 0$.

Pour tout réel x, $\sqrt{x^2} = |x|$.

Remarques: Calculer $\sqrt{9}$, $\sqrt{(-3)^2}$, $\sqrt{3^2}$

A-t-on l'égalité : $\sqrt{x^2} = \sqrt{x^2}$?

Si **oui**, justifier par une **démonstration** pour tout x réel.

Étude de fonctions

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

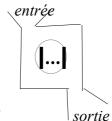
Si non, justifier à l'aide d'un contre-exemple.

II-2- Définition de la fonction valeur absolue

La fonction valeur absolue est la fonction définie sur \mathbb{R} par : $x \mapsto |x|$.

Illustration: on entre un nombre "Truc"

on "appuie " sur le bouton | ... |



il ressort le nombre **positif** " Machin " qui est la valeur absolue de " Truc "

II-3- Variation

En utilisant les résultats connus sur les fonctions affines, déterminer les variations de la fonction valeur absolue sur chacun des intervalles $[0; +\infty[$ et $]-\infty; 0]$

II-4- Courbe représentative

Justifier que la représentation graphique dans un repère $(O; \vec{i}, \vec{j})$ de la fonction valeur absolue est la réunion de deux demi-droites.

III- quelques opérations sur les fonctions

Objectif: À partir des variations connues de fonctions u et v, déterminer dans quelques cas simples les variations de fonctions obtenues par somme, produit, etc ...

Rappel:

La différence a - b est définie par la somme a + (-b)

Le quotient $\frac{a}{b}$ est définie par le produit $a \times \frac{1}{b}$.

III-1. Les fonctions $u + \lambda$ où $\lambda \in \mathbb{R}$.

Soit *u* une fonction définie sur un intervalle *I*.

Soit λ un réel.

Démontrer que les fonctions u et $u + \lambda$...

III-2. Les fonctions λu où $\lambda \in \mathbb{R}^*$.

Soit *u* une fonction définie sur un intervalle *I*.

Soit λ un réel non nul.

En considérant deux cas (disjonction des cas), comparer les variations des fonctions u et λu .

III-3. Les fonctions 1/u

u étant une fonction définie sur un intervalle I, à quelle condition peut-on définir la fonction $\frac{1}{u}$?

Lorsque cette condition est vérifiée, comparer les variations de u et $\frac{1}{u}$.

Application:

Après avoir déterminé l'ensemble de définition des fonctions,

dresser les tableaux de variations des fonctions $f: x \mapsto \frac{1}{x-1}$ et $g: x \mapsto \frac{1}{x^2+2x-3}$

III-4. Les fonctions \sqrt{u}

u étant une fonction définie sur un intervalle I, à quelle condition peut-on définir la fonction \sqrt{u} ?

Étude de fonctions

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

Lorsque cette condition est vérifiée, comparer les variations de u et \sqrt{u} ...

Application:

Après avoir déterminé l'ensemble de définition des fonctions,

dresser les tableaux de variations des fonctions $f: x \mapsto \sqrt{x-1}$ et $g: x \mapsto \sqrt{x^2+2x-3}$.

III-5- et autres ...

u et v étant deux fonctions définies sur I,

montrer par des exemples qu'on ne peut pas dans le cas général établir des théorèmes pour déterminer les variations de la somme u + v et du produit uv.

IV- Quelques rappels et compléments ...

IV- 1 Une fonction numérique

On entre un réel

dans un ensemble E_t où il est possible d'appliquer f.

on applique

il ressort le nombre réel:

IV- 2- Variation : qu'est-ce?

C'est une notion qui concerne l'action d'une fonction sur la relation d'ordre :

On entre deux réels a et b pris dans un

intervalle I

on les ordonne

et on applique

qui est une fonction **strictement**

croissante

sur l'intervalle I

et on applique

On entre deux réels a et b pris dans un

intervalle I

on les ordonne

La fonct

qui est une fonction **strictement**

décroissante

sur l'intervalle I

il ressort deux nombres réels: f(a) et f(b)

dans le même ordre que a et b

il ressort deux nombres réels: g(a) et g(b)dans l'ordre inverse de a et b

Les méthodes sont les habitudes de l'esprit et les économies de la mémoire. Rivarol fonctions racine val-abs inv-de-u.odt

IV-3 ... et des fonctions qui " se suivent ". (Opération nouvelle : composition de fonctions)

On entre un réel x dans un ensemble E_f où il est possible d'appliquer f.

on applique

1S

il ressort le nombre réel: f(x) qui se retrouve fort heureusement dans E_g

il ressort le nombre réel: g[f(x)]

Finalement:

On obtient une nouvelle fonction, la fonction

h composée de la fonction f suivie de g

Cette fonction est notée $g \circ f$.

elle est définie par: $h: x \mapsto g(f(x))$

On entre un réel \boldsymbol{x} on applique

il ressort le nombre réel: