

Extrait du tableur :

1156	1151	0,350987114	0,206797053	0	395	0,343179844	0,17570808
1157	1152	0,457420869	0,31618687	0	395	0,342881944	0,175555556
1158	1153	0,707849023	0,269059849	1	396	0,343451865	0,175847355
1159	1154	0,790712553	0,463706735	1	397	0,344020797	0,176138648
1160	1155	0,399282522	0,495869212	0	397	0,343722944	0,175986147

2276	2271	0,490260974 0,505637411	0	768	0,338177015 0,173146631
2277	2272	0,453828876 0,140452168	1	769	0,33846831 0,173295775
2278	2273	0,147800956 0,488913459	0	769	0,338319402 0,173219534

	G	Н	I	J		K	L
E	0,512						
-				=(1/	3)*\$	6C\$1*\$C\$1*\$	C\$1
a n E	pproximatio de l'aire de)						
			On sait calculer (programme de termir				le cette aire)
	0		aire de D=	0,170666	667		
	0						
	0						

Calcul d'aire sous un arc de parabole par la méthode de Monte Carlo

Objectifs : loi binomiale simulation au tableur Énoncé et recherche : I- Sur ce graphique le point A a pour abscisse 0,8. 1.5 Donner les coordonnées de B et de C. Calculer l'aire de OABC. 1 On crée au hasard un point M(x; y)С tel que $0 \le x < x_A$ et $0 \le y < y_B$. 0.5 Dans quel zone se trouve le point M? On note D la partie du plan délimitée par l'axe des abscisses, la droite d'équation $x = x_A$ et l'arc OB de la -0 0.5 0 0.5 1 A 0 parabole. Hachurer cette partie D et justifier que cette partie est caractérisée analytiquement par : D = {M(x; y) / 0 $\leq x < x_A \text{ ET } 0 \leq y < x^2$ } (Les { } se lisent : ensemble de ... et / se lit : tel que ...) Comment calculer la probabilité d'avoir $M \in D$? II- Une épreuve de Bernoulli simulée au tableur On crée un point au hasard, on note S (succès) l'événement $M \in D$. Donc P(S) = $\frac{\text{aire de } \dots}{\text{aire de } \dots}$, soit : aire de \dots = P(S)×aire de \dots L'instruction " =ALEA() " renvoie au hasard un nombre *a* tel que $0 \le a \le 1$ Quelle instruction permettra d'avoir un nombre au hasard ente 0 et x_A ? (cette instruction sera entrée dans la cellule B6). Quelle instruction permettra d'avoir un nombre au hasard ente 0 et y_B ? (cette instruction sera entrée dans la cellule C6). Que retourne l'instruction : " SI(ET(B6< x_A ;C6<B6×B6);1;0) ? cette instruction retourne avec la probabilité

et avec la probabilité

III- Schéma de Bernoulli

Soit X la variable aléatoire comptant le nombre de succès sur *n* épreuves En faisant une répétition de cette épreuve de Bernoulli, on peut faire une approximation de l'aire de D.

IV – Tableur

Sur la ligne 1, on entre les données de façon à pouvoir modifier la valeur de x_A .