Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

Exercice 1 le modèle de Léontief

Dans un pays imaginaire, l'économie dépend de trois secteurs : agriculture, biens manufacturés et énergie.

Pour pouvoir fonctionner, chaque secteur nécessite l'utilisation d'une partie de sa production, une partie de la production des deux autres secteurs et doit satisfaire à la demande extérieure (besoins de la population).

Ces échanges inter-industriels sont représentés dans le tableau suivant où l'unité de production est le milliard de de l'unité monétaire.

	consommation				
production d'		Agriculture	Biens	Énergie	besoins de la population
	1 unité d'agriculture	0,2	0	0	13,2 (unités d'agriculture)
	1 unité de biens	0,1	0,12	0,08	17,6 (unités de biens)
	1 unité d'énergie	0,05	0,08	0,12	1,8 (unité d'énergie)

On suppose que l'économie est équilibrée : la production totale de ces trois secteurs couvre les besoins intérieurs et extérieurs.

1) On note x le nombre d'unités produites en agriculture, y celui d'unités produites en biens manufacturés et z celui d'unités produites en énergie.

Expliquer pourquoi 0.1x + 0.12y + 0.08z + 17.6 = y.

- 2) Écrire un système de trois équations traduisant ce tableau d'échanges inter-industriels.
- 3) Déterminer la matrice carrée A telle que $A \times P + D = P$ où $P = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $D = \begin{pmatrix} 13,2 \\ 17,6 \\ 1.8 \end{pmatrix}$
- 4) **Montrer** que $A \times P + D = P$ équivaut à $(I_3 A) \times P = D$ où I_3 est la matrice unité d'ordre 3.
- 5) On pose $L = I_3 A$

(matrice de Léontief)

Calculer les coefficients de la matrice L.

À l'aide de la calculatrice, écrire L⁻¹ (on donnera les coefficients sous forme fractionnaire)

6) Quelle doit être la production de chaque secteur pour que l'économie soit équilibrée ?

Bonus (si tout est fait ...)

7) On suppose pour l'année suivante que la demande intérieure n'est pas modifiée mais que la demande extérieure est donnée par :

besoins de la population			
10,2 (unités d'agriculture)			
18,5 (unités de biens)			
2 (unité d'énergie)			

Quelle devra être la production de chaque secteur pour que l'économie soit équilibrée ?

Classe: TESSpé DS2 Mardi 18/11/2014

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

Exercice 2 un peu de logique

I- On pose
$$A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$
, calculer A^2 .

II- On pose
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, calculer A^4

III- Dire si les phrases suivantes sont vraies ou fausses.

Si la phrase est vraie, la justifier à l'aide d'une propriété du cours.

Si la phrase est fausse, donner un contre-exemple.

A et B sont des matrices carrées d'ordre 2. I_2 est la matrice unité d'ordre 2, O_2 est la matrice nulle d'ordre 2.

- 1) Si $A^4 = I_2$ alors la matrice A est inversible.
- 2) Si A est une matrice inversible alors $A^4 = I_2$.
- 3) Si $A \times B = O_2$ alors $A = O_2$ ou $B = O_2$.
- 4) Si $A = O_2$ ou $B = O_2$ alors $A \times B = O_2$.