Index

1 page 20
12 page 20
15 page 20
38 page 21
54 page 23
59 page 23
72 page 24
77 page 25
78 page 25 Vrai-Faux.
79 page 25 Vrai-Faux.
81 page 25
82 page 25
83 page 25
84- 85- 86 page 25. Vrai-Faux6
102 page 28 matrice de Léontief.
Sujet A page 31
N°110 de la fiche

1 page 20

a) $A = \begin{pmatrix} 3 & 5 \\ 2 & 11 \end{pmatrix}$ est une matrice carrée d'ordre 2 (ou de format 2×2).

$$a_{1,1} = 3$$
, $a_{1,2} = 5$, $a_{2,1} = 2$, $a_{2,2} = 11$

b) $A = \begin{pmatrix} 4 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix}$ est une matrice de format 2×3 .

$$a_{1,1} = 4$$
, $a_{1,2} = 1$, $a_{1,3} = 2$, $a_{2,1} = 0$, $a_{2,2} = 1$, $a_{2,3} = 3$

12 page 20

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}, A + B = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}, A - B = \begin{pmatrix} -3 & -1 \\ 1 & 3 \end{pmatrix}.$$

15 page 20

$$k = 2, A = \begin{pmatrix} -1 & 1 \\ 3 & 5 \end{pmatrix}, 2A = \begin{pmatrix} -2 & 2 \\ 6 & 10 \end{pmatrix}$$

$$k = 2, B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & -1 & 2 \end{pmatrix}, 2B = \begin{pmatrix} 2 & 4 & 6 \\ 6 & -2 & 4 \end{pmatrix}.$$

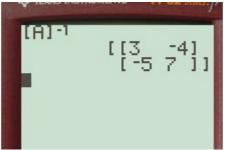
38 page 21

(S):
$$\begin{cases} 7x + 4y = -1 \\ 5x + 3y = -1 \end{cases}$$

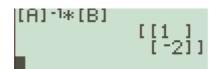
1)
$$A = \begin{pmatrix} 7 & 4 \\ 5 & 3 \end{pmatrix}$$
, $X = \begin{pmatrix} x \\ y \end{pmatrix}$, $B = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$.

L'écriture matricielle du système est AX = B.

2 a) La matrice A est inversible car $d\acute{e}t(A) = 7 \times 3 - 5 \times 4 = 1$ est différent de 0.



$$b) A^{-1} = \begin{pmatrix} 3 & -4 \\ -5 & 7 \end{pmatrix}$$



$$X = A^{-1} B = \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

Le système (S) a pour solutions x = 1 et y = -2

54 page 23

1)

	A (paquet d'un kg)	B (paquet d'un kg)	C (paquet d'un kg)
Arabica (en kg)	0,7	0,5	0,8
Robusta (en kg)	0,3	0,5	0,2

$$\mathbf{M} = \begin{pmatrix} 0.7 & 0.5 & 0.8 \\ 0.3 & 0.5 & 0.2 \end{pmatrix}$$

2) Fabrication:

Nombre de paquets A	25
Nombre de paquets B	40
Nombre de paquets C	35

La matrice de fabrication
$$X = \begin{pmatrix} 25 \\ 40 \\ 35 \end{pmatrix}$$

$$MX = \begin{pmatrix} 0.7 & 0.5 & 0.8 \\ 0.3 & 0.5 & 0.2 \end{pmatrix} \times \begin{pmatrix} 25 \\ 40 \\ 35 \end{pmatrix} = \begin{pmatrix} 0.7 \times 25 + 0.5 \times 40 + 0.8 \times 35 \\ 0.3 \times 25 + 0.5 \times 40 + 0.2 \times 35 \end{pmatrix} = \begin{pmatrix} 65.5 \\ 34.5 \end{pmatrix}$$

Pour fabriquer, ce jour-là, 25 paquets A, 40 paquets B et 35 paquets C, il faut 65,5 kg d'arabica et 34,5 kg de robusta.

3) Le stock en début de journée : $S = \begin{pmatrix} 150 \\ 100 \end{pmatrix}$

Le stock en fin de journée :
$$S_{fin} = \begin{pmatrix} 150 \\ 100 \end{pmatrix} - \begin{pmatrix} 65,5 \\ 34,5 \end{pmatrix} = \begin{pmatrix} 150-65,5 \\ 100-34,5 \end{pmatrix} = \begin{pmatrix} 84,5 \\ 65,5 \end{pmatrix}$$

59 page 23

Produit de matrices

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 4 \\ 3 & 0 & 2 \end{pmatrix} \text{ et } B = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 3 & 0 \\ 0 & -1 & 4 \end{pmatrix}$$

Calcul de AB	$\begin{pmatrix} 2 & 0 & 1 \\ 1 & 3 & 0 \\ 0 & -1 & 4 \end{pmatrix}$	
$ \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 4 \\ 3 & 0 & 2 \end{pmatrix} $	$ \begin{pmatrix} 1 \times 2 + 1 \times 1 + 0 \times 0 & 1 \times 0 + 1 \times 3 + 0 \times (-1) & 1 \times 1 + 1 \times 0 + 0 \times 4 \\ 0 \times 2 + (-1) \times 1 + 4 \times 0 & 0 \times 0 + (-1) \times 3 + 4 \times (-1) & 0 \times 1 + (-1) \times 0 + 4 \times 4 \\ 3 \times 2 + 0 \times 1 + 2 \times 0 & 3 \times 0 + 0 \times 3 + 2 \times (-1) & 3 \times 1 + 0 \times 0 + 2 \times 4 \end{pmatrix} $	$AB = \begin{pmatrix} 3 & 3 & 1 \\ -1 & -7 & 16 \\ 6 & -2 & 11 \end{pmatrix}$

Calcul de BA	$\begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 4 \\ 3 & 0 & 2 \end{pmatrix}$	
$ \begin{pmatrix} 2 & 0 & 1 \\ 1 & 3 & 0 \\ 0 & -1 & 4 \end{pmatrix} $	$ \begin{pmatrix} 2 \times 1 + 0 \times 0 + 1 \times 3 & 2 \times 1 + 0 \times (-1) + 1 \times 0 & 2 \times 0 + 0 \times 4 + 1 \times 2 \\ 1 \times 1 + 3 \times 0 + 0 \times 3 & 1 \times 1 + 3 \times (-1) + 0 \times 0 & 1 \times 0 + 3 \times 4 + 0 \times 2 \\ 0 \times 1 + (-1) \times 0 + 4 \times 3 & 0 \times 1 + (-1) \times (-1) + 4 \times 0 & 0 \times 0 + (-1) \times 4 + 4 \times 2 \end{pmatrix} $	$BA = \begin{pmatrix} 5 & 2 & 2 \\ 1 & -2 & 12 \\ 12 & 1 & 4 \end{pmatrix}$

72 page 24

Rappel: Une matrice carrée est inversible si et seulement si son déterminant est non nul.

Pour une matrice carrée $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ d'ordre 2, le déterminant est le nombre ad - bc.

1) La matrice
$$A = \begin{pmatrix} 6 & -4 \\ 7 & -5 \end{pmatrix}$$
 est inversible puisque $d\acute{e}t(A) = 6 \times (-5) - (-4) \times 7 = -30 + 28 = -2$.

2) Soit
$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, on cherche $\begin{pmatrix} 6 & -4 \\ 7 & -5 \end{pmatrix} \times \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

On a donc le système :
$$\begin{cases} 6a - 4c = 1 & L1 \\ 6b - 4d = 0 & L2 \\ 7a - 5c = 0 & L3 \\ 7b - 5d = 1 & L4 \end{cases},$$

qu'on peut décomposer en deux systèmes : $\begin{cases} 6a - 4c = 1 \\ 7a - 5c = 0 \end{cases} \begin{pmatrix} L1 \\ L3 \end{pmatrix} \text{ et } \begin{cases} 6b - 4d = 0 \\ 7b - 5d = 1 \end{cases} \begin{pmatrix} L2 \\ L4 \end{pmatrix}.$

De (L3), on tire : $c = \frac{7}{5}a$, en injectant dans (L1), il vient : $6a - 4 \times \frac{7}{5}a = 1$, soit : $\frac{2}{5}a = 1$. $a = \frac{5}{2}$

Comme $c = \frac{7}{5}a$, on a : $c = \frac{7}{5} \times \frac{5}{2} = \frac{7}{2}$.

De (L2), on tire : $d = \frac{3}{2}b$, puis dans (L4) : $7b - 5 \times \frac{3}{2}b = 1$, soit : $\frac{-1}{2}b = 1$. b = -2

Comme $d = \frac{3}{2}b$, on a : $d = \frac{3}{2} \times (-2) = -3$

La matrice $B = \begin{pmatrix} \frac{5}{2} & -2\\ \frac{7}{2} & -3 \end{pmatrix}$.

La matrice inverse de A est $\begin{bmatrix} \frac{5}{2} & -2\\ \frac{7}{2} & -3 \end{bmatrix}$.

77 page 25

1)
$$A = \begin{pmatrix} -2 & 3 & -5 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$
, $A^2 = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $A^3 = \begin{pmatrix} 2 & -1 & 5 \\ 0 & 1 & 0 \\ -1 & 1 & -2 \end{pmatrix}$, $A^4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$

2) Comme $A \times A^3 = A^3 \times A = A^4 = I_3$,

la matrice A est inversible et son inverse $A^{-1} = A^3 = \begin{pmatrix} 2 & -1 & 5 \\ 0 & 1 & 0 \\ -1 & 1 & -2 \end{pmatrix}$

3) Comme $A^2 \times A^2 = A^4 = I_3$, la matrice A^2 est inversible et son inverse est elle-même.

78 page 25 Vrai-Faux

A est une matrice carré d'ordre 3 telle que $A^3 = I_3$.

La matrice A est inversible car $A \times A^2 = A^2 \times A = A^3 = I_3$.

La matrice inverse de A est A^2 .

79 page 25 Vrai-Faux

La matrice $\begin{pmatrix} 6 & 10 \\ 3 & 5 \end{pmatrix}$ n'est pas inversible car $6 \times 5 - 3 \times 10 = 0$.

Le déterminant est nul.

81 page 25

a) (S)
$$\begin{cases} 2x+9y=30 \\ 5x+2y=-7 \end{cases}$$

Méthode par substitution :

De l'équation 1, on tire : $x = \frac{30-9y}{2}$ et on remplace (substitue) dans l'équation 2 :

$$5 \times \left(\frac{30 - 9y}{2}\right) + 2y = -7$$
 afin d'avoir une seule inconnue.

On développe, réduit et " isole " y.

$$\frac{150 - 45y + 4y}{2} = -7, \text{ soit } : -41y = -14 - 150$$

$$y = \frac{164}{41} = 4.$$
$$x = \frac{30 - 9 \times 4}{2} = -3.$$

Vérification:

$$2\times(-3)+9\times4 = -6+36=30$$
 et $5\times(-3)+2\times4 = -15+8=-7$

(S) a pour solution le couple (-3; 4)

b) (S):
$$\begin{cases} 2x - 5y + 3z = 1 & L1 \\ -x + y - 2z = -5 & L2 \\ x + 2y - z = 2 & L3 \end{cases}$$

Par combinaison linéaire

On cherche des coefficients de façon à " éliminer " par une somme algébrique entre une ligne et successivement les deux autres une des inconnues.

Par exemple : $2 \times L1 + 3 \times L2$ et $L1 + 3 \times L3$ mène à :

$$\begin{cases} 2x - 5y + 3z = 1 \\ x - 7y = -13 \\ 5x + y = 7 \end{cases} \begin{pmatrix} L1 \\ L2 \\ L3 \end{pmatrix}$$
 En faisant maintenant L2 +7×L3, on aura:
$$\begin{cases} 2x - 5y + 3z = 1 \\ x - 7y = -13 \\ 36x = 36 \end{cases}$$
, on en déduit successivement en remontant: $x = 1$; $y = \frac{13+1}{7} = 2$ et $z = \frac{1-2+10}{3} = 3$

(S) a pour solution le triplet (1; 2; 3)

82 page 25

 $f(x) = ax^2 + bx + c.$

 C_f passe par A(1; 2), donc f(1) = 2, soit : a + b + c = 2

par B(4; 11), donc f(4) = 11, soit: 16a + 4b + c = 11

par C(-1; 2), donc f(-1) = 6, soit : a - b + c = 6

Les réels a, b, c sont donc les solutions du système :

(S):
$$\begin{cases} a+b+c=2 \\ 16a+4b+c=11 \\ a-b+c=6 \end{cases} \begin{pmatrix} L1 \\ L2 \\ L3 \end{pmatrix}$$

En faisant L2 - L1 et L1 - L3,

(S) équivaut à
$$\begin{cases} a+b+c=2\\ 15a+3b=9\\ 2b=-4 \end{cases}$$

Il vient immédiatement : b = -2 ; $a = \frac{9+6}{15} = 1$ et c = 2 - 1 + 2 = 3.

$$f(x) = x^2 - 2x + 3$$

Vérification en calculant f(1), f(4) et f(-1)

83 page 25

D'après les données, on a pour x appareils (L), y appareils (C) et z appareils (V) :

besoin en acier (masse en kg) : 10x + 4y + 10z

besoin en peinture (masse en kg) : 2x + y + z

besoin en heures (durée en h) : 10x + 6y + 12z

Si 4 200 kg d'acier, 800 kg de peinture et 5 000 heures de travail ont été nécessaires, le nombre (x; y; z)

d'appareils fabriqués est solution du système : $\begin{cases} 10x+4y+10z=4200\\ 2x+y+z=800\\ 10x+6y+12z=5000 \end{cases}$

qui est équivalent à l'équation matricielle : AX = B avec $A = \begin{pmatrix} 10 & 4 & 10 \\ 2 & 1 & 1 \\ 10 & 6 & 12 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $B = \begin{pmatrix} 4200 \\ 800 \\ 5000 \end{pmatrix}$.

Si A est inversible, la solution est donnée par la matrice $A^{-1}B = \begin{pmatrix} 200 \\ 300 \\ 100 \end{pmatrix}$.

On a fabriqué 200 appareils (L), 300 appareils (C) et 100 appareils (V) .

84-85-86 page 25. Vrai-Faux

On considère le système (S) : $\begin{cases} 5x+2y=1\\ 3x-y=5 \end{cases}$

(S) a une solution unique car en écrivant l'équation matricielle associée AX = B,

on a $d\acute{e}t(A) = 5 \times (-1) - 2 \times 3 = -11$. Le déterminant est non nul, la matrice est inversible, le système a une seule

solution.

Si on pose AX = B avec X =
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
, alors A = $\begin{pmatrix} 5 & 2 \\ 3 & -1 \end{pmatrix}$ (et non $\begin{pmatrix} 5 & 3 \\ 2 & -1 \end{pmatrix}$) et B = $\begin{pmatrix} 1 \\ 5 \end{pmatrix}$.

et la solution est donnée par la matrice A^{-1} B.

Remarque: En posant $X = \begin{pmatrix} x & y \end{pmatrix}$, on aurait le système XA = B avec $A = \begin{pmatrix} 5 & 3 \\ 2 & -1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 5 \end{pmatrix}$.

et la solution serait donnée par la matrice BA^{-1} .

102 page 28 matrice de Léontief

Une économie compte trois secteurs de production X, Y, Z

Rappel:

L'offre (production) est égale à la somme des demandes (consommation interne et consommation externe)

Le tableau donne comme indications:

La consommation (demande) interne d'unités de X est : 0,3 unités de X, 0,4 unités de Y et 0,1 unités de Z (première ligne du tableau).

On a donc : 0.3x + 0.4y + 0.1z pour la demande interne qui ajoutée à celle des consommateurs (ici : 11 unités) doit être égale à la production de x unités de X.

D'où,
$$x = 11 + 0.3x + 0.4y + 0.1z$$
.

La deuxième ligne du tableau donne la consommation interne d'unités de Y et la demande des consommateurs est de 20 unités de Y.

$$y = 20 + 0.5x + 0.2y + 0.6z$$

La troisième ligne donne la consommation interne d'unités de Z et la demande des consommateurs est de 42 unités de Z.

$$z = 42 + 0.1x + 0.3y + 0.1z$$

d'où le système (S):
$$\begin{cases} x = 11 + 0.3 x + 0.4 y + 0.1 z \\ y = 20 + 0.5 x + 0.2 y + 0.6 z \\ z = 42 + 0.1 x + 0.3 y + 0.1 z \end{cases}$$

2) On pose A =
$$\begin{pmatrix} 0.3 & 0.4 & 0.1 \\ 0.5 & 0.2 & 0.6 \\ 0.1 & 0.3 & 0.1 \end{pmatrix}$$
, X = $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et C = $\begin{pmatrix} 11 \\ 20 \\ 42 \end{pmatrix}$.

Calcul de AX + C:

$$\begin{pmatrix} 0,3 & 0,4 & 0,1 \\ 0,5 & 0,2 & 0,6 \\ 0,1 & 0,3 & 0,1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 11 \\ 20 \\ 42 \end{pmatrix} = \begin{pmatrix} 0,3 x + 0,4 y + 0,1 z + 11 \\ 0,5 x + 0,2 y + 0,6 z + 20 \\ 0,1 x + 0,3 y + 0,1 z + 42 \end{pmatrix}$$

X = AX + C est donc équivalent à
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0.3 & x + 0.4 & y + 0.1 & z + 11 \\ 0.5 & x + 0.2 & y + 0.6 & z + 20 \\ 0.1 & x + 0.3 & y + 0.1 & z + 42 \end{pmatrix}$$

qui est équivalent à
$$\begin{cases} x = 11 + 0.3 x + 0.4 y + 0.1 z \\ y = 20 + 0.5 x + 0.2 y + 0.6 z \\ z = 42 + 0.1 x + 0.3 y + 0.1 z \end{cases}$$

3) Comme $I_3 \times X = X$, l'équation matricielle X = AX + C est équivalente à $I_3 \times X - A \times X = C$ Après factorisation à gauche de X, on obtient :

l'équation matricielle X = AX + C est équivalente à $(I_3 - A)X = C$

4) Calcul de la matrice
$$B = I_3 - A = \begin{pmatrix} 0.7 & -0.4 & -0.1 \\ -0.5 & 0.8 & -0.6 \\ -0.1 & -0.3 & 0.9 \end{pmatrix}$$

$$B^{-1} = (I_3 - A)^{-1} = \begin{pmatrix} \frac{540}{151} & \frac{390}{151} & \frac{320}{151} \\ \frac{510}{151} & \frac{620}{151} & \frac{470}{151} \\ \frac{230}{151} & \frac{250}{151} & \frac{360}{151} \end{pmatrix}$$

5) les quantités produites sont données par la matrice $X = B^{-1}C = \begin{pmatrix} 180 \\ 250 \\ 150 \end{pmatrix}$.

180 unités de X, 250 unités de Y et 150 unités de Z.

Observations dans le tableau

Production totale de Consommation de par	X 180 unités	Y 250 unités	Z 150 unités	consommation externe	consommation totale (demande)
X	$0.3 \times 180 = 54$	$0,4 \times 250 = 100$	$0.1 \times 150 = 15$	11	54+100+15+11 = 180
Y	$0.5 \times 180 = 90$	$0.2 \times 250 = 50$	$0.6 \times 150 = 90$	20	90+50+90+20= 250
Z	$0.1 \times 180 = 18$	$0.3 \times 250 = 75$	$0.1 \times 150 = 15$	42	18+75+15+42 = 150

Sujet A page 31

Deux tableaux exprimant le nombre et les caractéristiques d'articles fabriqués par une usine,

$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$	m_1	m_2	m_3	
---	-------	-------	-------	--

3	9	5	m_1
4	0	9	m_2
4	8	6	m_3

5	6	3	Masse (kg)
180	250	150	Coûts (€)

$$A = \begin{pmatrix} 3 & 9 & 5 \\ 4 & 0 & 9 \\ 4 & 8 & 6 \end{pmatrix} \quad \text{et } M = \begin{pmatrix} 5 & 6 & 3 \\ 180 & 250 & 150 \end{pmatrix}$$

1/ Une semaine donnée, l'usine doit fournir 8 articles a_1 , 12 articles a_2 et 13 articles a_3 , d'où, la matrice

 $F = \begin{pmatrix} 8 \\ 12 \\ 13 \end{pmatrix}$ qui représente la fabrication cette semaine-là.

a) le produit
$$A \times F = \begin{pmatrix} 3 \times 8 + 9 \times 12 + 5 \times 13 \\ 4 \times 8 + 0 \times 12 + 9 \times 13 \\ 4 \times 8 + 8 \times 12 + 6 \times 13 \end{pmatrix} = \begin{pmatrix} 197 \\ 149 \\ 206 \end{pmatrix}$$
 représente le nombre de modules m_1 , m_2 , m_3 .

Pour fournir 8 articles a_1 , 12 articles a_2 et 13 articles a_3 , il faut 197 modules m_1 , 149 m_2 et 206 m_3 . b) la demande peut être satisfaite puisqu'il y a 210 modules de chaque sorte en stock. $197 \le 210$, $149 \le 210$ et $206 \le 210$.

2. Une autre semaine la production a demandé 174 modules m_1 , 121 modules m_2 et 182 modules m_3 . On a fabriqué respectivement x, y, z articles a_1, a_2, a_3 .

On obtient avec ces données le système $\begin{cases} 3x+9y+5z=174\\ 4x+0y+9z=121\\ 4x+8y+6z=182 \end{cases}$

On cherche donc une matrice $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ telle que AX = B avec $B = \begin{pmatrix} 174 \\ 121 \\ 182 \end{pmatrix}$.

Si A est inversible, la matrice de fabrication est $S = A^{-1} B$.

La calculatrice donne $S = A^{-1} B = \begin{pmatrix} 10 \\ 11 \\ 9 \end{pmatrix}$.

On a donc fabriqué respectivement 10 ; 11 et 9 articles a_1 , a_2 et a_3 .

3.a) Le produit M×A =
$$\begin{pmatrix} 5 & 6 & 3 \\ 180 & 250 & 150 \end{pmatrix} \begin{pmatrix} 3 & 9 & 5 \\ 4 & 0 & 9 \\ 4 & 8 & 6 \end{pmatrix} = \begin{pmatrix} 51 & 69 & 97 \\ 2140 & 2820 & 4050 \end{pmatrix}$$

La première ligne donne des nombres exprimés en kg.

On a multiplié la masse des modules par le nombre respectif de modules pour chaque article.

Les coefficients de la première ligne sont les masses des articles a_1 , a_2 et a_3 .

La première ligne donne des nombres exprimés en €.

On a multiplié le coût des modules par le nombre respectif de modules pour chaque article.

Les coefficients de la deuxième ligne sont les coûts de ces articles a_1 , a_2 et a_3 .

b) L'usine fabrique x articles a_1 , y articles a_2 et z articles a_3 .

Le nombre d'articles fabriqués est x + y + z.

En multipliant les masses trouvées au 3a) pour chaque article par le nombre d'articles, on a :

Leur masse totale (en kg) est 51x + 69y + 97z.

En multipliant les coûts trouvés au 3a) pour chaque article par le nombre d'articles, on a :

Leur coût total (en euros) est 2140x + 2820y + 4050z.

c) Le nombre total d'articles étant de 27 unités, la masse totale de 1 935 kg et le coût total de 80 410 €,

on obtient le système :
$$\begin{cases} x+y+z=27\\ 51x+69y+97z=1935\\ 2140x+2820y+4050z=80410 \end{cases}$$
 qui est équivalent à l'équation matricielle AX = B

on obtient le système :
$$\begin{cases} x+y+z-27 \\ 51x+69y+97z=1935 \\ 2140x+2820y+4050z=80410 \end{cases}$$
 que $A = \begin{pmatrix} 1 & 1 & 1 \\ 51 & 69 & 97 \\ 2140 & 2820 & 4050 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $B = \begin{pmatrix} 27 \\ 1935 \\ 80410 \end{pmatrix}$

La solution est donc $N = A^{-1} B$.

La calculatrice donne N = A^{-1} B = $\begin{pmatrix} 10 \\ 8 \\ 9 \end{pmatrix}$, soit : 10 articles a_1 , 8 articles a_2 et 9 articles a_3 .

N°110 de la fiche

$$A = \begin{pmatrix} 3 & 5 \\ -1 & -2 \end{pmatrix}$$

$$M_0 = \begin{pmatrix} -5 & -5 \\ 1 & 0 \end{pmatrix}$$

$$AM_0 = \begin{pmatrix} 3 \times (-5) + 5 \times 1 & 3 \times (-5) + 5 \times 0 \\ -1 \times (-5) + (-2) \times 1 & -1 \times (-5) + (-2) \times 0 \end{pmatrix} = \begin{pmatrix} -10 & -15 \\ 3 & 5 \end{pmatrix}$$

$$M_0 A = \begin{pmatrix} -5 \times 3 - 5 \times (-1) & -5 \times 5 - 5 \times (-2) \\ 1 \times 3 + 0 \times (-1) & 1 \times 5 + 0 \times (-2) \end{pmatrix} = \begin{pmatrix} -10 & -15 \\ 3 & 5 \end{pmatrix}$$

On a bien : $AM_0 = M_0 A$

2) Pour montrer une équivalence : (P) \Leftrightarrow (Q), on montre deux implications : (P) \Rightarrow (Q) et (Q) \Rightarrow (P)

a) Montrons $(Q) \Rightarrow (P)$

On sait : (Q).

Soit : il existe deux réels α et β tels que $M = \alpha M_0 + \beta I_2$

Objectif : il s'agit de prouver l'égalité AM = MA.

Pour cela, on calcule séparément les deux produits

Calcul de AM:

$$AM = A(\alpha M_0 + \beta I_2) = \alpha AM_0 + \beta AI_2$$
 (distributivité à gauche de la multiplication sur l'addition)

Comme $AI_2 = I_2 A = A$ (I_2 est l'élément neutre de la maultiplication)), on a :

$$AM = \alpha AM_0 + \beta A$$

Calcul de MA:

$$MA = (\alpha M_0 + \beta I_2) A = \alpha M_0 A + \beta I_2 A$$
 (distributivité à droite de la multiplication sur l'addition)

$$MA = \alpha M_0 A + \beta A$$

Or, on sait que
$$AM_0 = M_0A$$
, d'où, $AM = \alpha AM_0 + \beta A = \alpha M_0A + \beta A = MA$

Conclusion : on a
$$(P)$$
 : $AM = MA$

l'implication $(Q) \Rightarrow (P)$ est démontrée.

b) Montrons $(P) \Rightarrow (Q)$

On sait : (P).

Soit: AM = MA avec A =
$$\begin{pmatrix} 3 & 5 \\ -1 & -2 \end{pmatrix}$$

Objectif: il s'agit de trouver deux réels α et β tels que $M = \alpha AM_0 + \beta AI_2$ (M_0 est la matrice du 1/)

Pour cela, on pose $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, on calcule MA et AM, on compare et (on verra bien)

$$MA = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 3 & 5 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} 3a - b & 5a - 2d \\ 3c - d & 5c - 2d \end{pmatrix}$$

$$AM = \begin{pmatrix} 3 & 5 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3a+5c & 3b+5d \\ -a-2c & -b-2d \end{pmatrix}$$

Comme MA = AM, on a :
$$\begin{cases} 3a-b=3a+5c \\ 5a-2d=3b+5d \\ 3c-d=-a-2c \\ 5c-2d=-b-2d \end{cases}$$
 (Système Σ)

N'oublions pas l'objectif déterminer
$$\alpha$$
 et β tels que $M = \alpha M_0 + \beta I_2 = \alpha \begin{pmatrix} -5 & -5 \\ 1 & 0 \end{pmatrix} + \beta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
$$= \begin{pmatrix} -5\alpha + \beta & -5\alpha \\ \alpha & \beta \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

 $id\acute{e}e : Si \ on \ pose \ \alpha = c \ et \ \beta = d.$

On va donc traiter ce système (Σ) en exprimant a et b en fonction de c et d.

$$\begin{cases} 3a-b=3a+5c \\ 5a-2d=3b+5d \\ 3c-d=-a-2c \\ 5c-2d=-b-2d \end{cases} \Leftrightarrow \begin{cases} b=-5c \\ 5a-3b=3d \\ a=-5c+d \\ b=-5c \end{cases}$$

$$\mathbf{M} = \begin{pmatrix} -5c + d & -5c \\ c & d \end{pmatrix} = \begin{pmatrix} -5c & -5c \\ c & 0 \end{pmatrix} + \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix} = c \begin{pmatrix} -5 & -5 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Conclusion :On a donc trouvé deux réels $\alpha = c$ et $\beta = d$ tels que $M = \alpha AM_0 + \beta AI_2$ (Q)

L'implication $(P) \Rightarrow (Q)$ est démontrée