Le sujet est composé de 3 exercices indépendants.

Le candidat doit traiter tous les exercices.

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

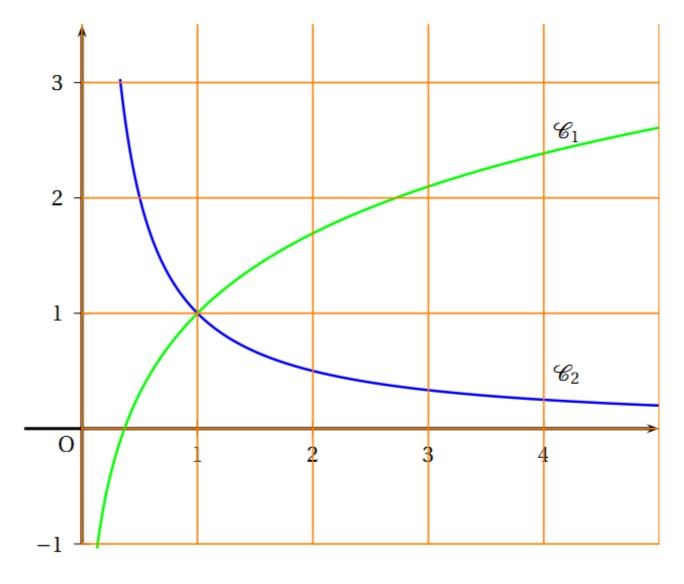
EXERCICE 1

10 points

Commun à tous les candidats

Partie I

Sur le graphique ci-dessous, on a représenté dans un repère orthonormal, les courbes \mathcal{C}_1 et \mathcal{C}_2 représentatives de deux fonctions f_1 et f_2 définies sur l'intervalle]0; $+\infty[$.



On sait que:

– l'axe des ordonnées est asymptote aux courbes \mathcal{C}_1 et \mathcal{C}_2

- l'axe des abscisses est asymptote à la courbe \mathcal{C}_2
- la fonction f_2 est continue et strictement décroissante sur l'intervalle]0; $+\infty[$
- la fonction f_1 est continue et strictement croissante sur l'intervalle]0; $+\infty[$
- la limite quand x tend vers +∞ de $f_1(x)$ est +∞.

Pour chacune des quatre questions de cette partie, une seule des trois propositions est exacte. Le candidat indiquera sur la copie la réponse choisie. Aucune justification n'est demandée. Chaque réponse juste rapporte 0,5 point. Une réponse fausse ou l'absence de réponse n'est pas sanctionnée.

- 1. La limite quand x tend vers 0 de $f_2(x)$ est :
- 0

- On ne peut pas conclure
- 2. La limite quand x tend vers $+\infty$ de $f_2(x)$ est :
- 0

• On ne peut pas conclure

- 3. En $+\infty$, \mathcal{C}_1 admet une asymptote oblique :
- Oui

On ne peut pas conclure

4. Le tableau de signes de $f_2(x) - f_1(x)$ est :

x	0		$+\infty$
$f_2(x)$ - $f_1(x)$		+	

X	0			$+\infty$
$f_2(x)-f_1(x)$			_	

x	0		1		$+\infty$
$f_2(x)$ – $f_1(x)$		+	0	_	

Partie II

On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par $f(x) = \ln(x) + 1 - \frac{1}{x}$.

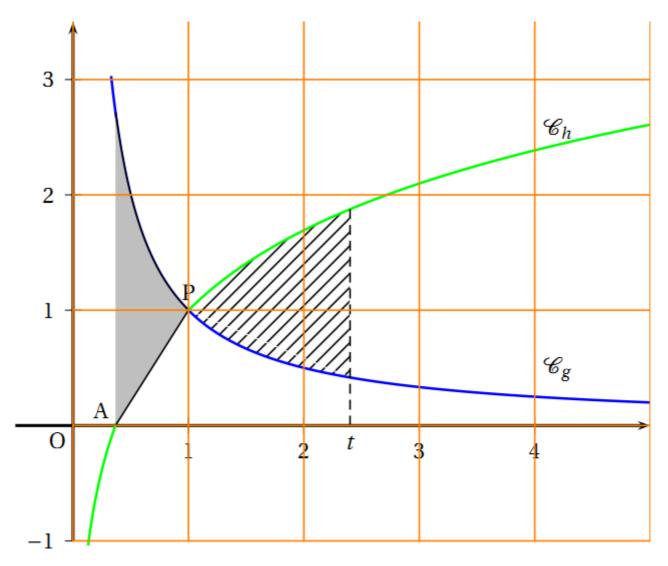
• Non

- 1. Déterminer les limites de la fonction f aux bornes de son ensemble de définition.
- 2. Étudier les variations de la fonction f sur l'intervalle]0; $+\infty[$.
- 3. En déduire le signe de f(x) lorsque x décrit l'intervalle]0; $+\infty[$.
- 4. Montrer que la fonction F définie sur l'intervalle]0; $+\infty[$ par $F(x) = x \ln x \ln x$ est une primitive de la fonction f sur cet intervalle.
- 5. Démontrer que la fonction F est strictement croissante sur l'intervalle]1 ; $+\infty$ [.
- 6. Montrer que l'équation $F(x) = 1 \frac{1}{e}$ admet une unique solution dans l'intervalle]1; $+\infty$ [qu'on note α .
- 7. Donner un encadrement de α d'amplitude 10^{-1} .

Partie III

Soit g et h les fonctions définies sur l'intervalle]0; $+\infty[$ par $: g(x) = \frac{1}{x}$ et $h(x) = \ln(x) + 1$.

Sur le graphique ci-dessous, on a représenté dans un repère orthonormal, les courbes \mathcal{C}_g et \mathcal{C}_h représentatives des fonctions g et h.



- 1. A est le point d'intersection de la courbe \mathcal{C}_h et de l'axe des abscisses. Déterminer les coordonnées du point A.
- 2. P est le point d'intersection des courbes \mathcal{C}_g et \mathcal{C}_h . Justifier que les coordonnées du point P sont (1;1).
- 3. On note \mathcal{A} l'aire du domaine délimité par les courbes \mathcal{C}_g et \mathcal{C}_h et les droites d'équations respectives $x = \frac{1}{e}$

et x = 1 (domaine grisé sur le graphique).

- a. Exprimer l'aire \mathcal{A} à l'aide de la fonction f définie dans la partie II.
- b. Montrer que $\mathcal{A} = 1 \frac{1}{e}$.
- 4. Soit t un nombre réel de l'intervalle]1; $+\infty$ [. On note \mathcal{B}_t l'aire du domaine délimité par les droites d'équations respectives x = 1, x = t et les courbes \mathcal{C}_g et \mathcal{C}_h domaine hachuré sur le graphique).

On souhaite déterminer une valeur de t telle que $\mathcal{A} = \mathcal{B}_t$.

- a. Montrer que $\mathcal{B}_t = t \ln(t) \ln(t)$.
- b. Conclure.

EXERCICE 2

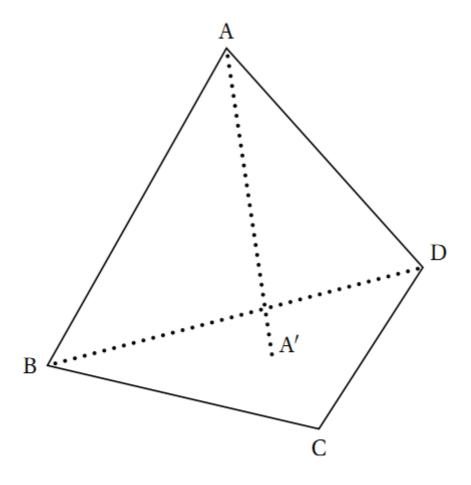
5 points

Candidats n'ayant pas suivi l'enseignement de spécialité

Partie 1

Dans cette partie, ABCD est un tétraèdre régulier, c'est-à-dire un solide dont les quatre faces sont des triangles équilatéraux.

A' est le centre de gravité du triangle BCD.



Dans un tétraèdre, le segment joignant un sommet au centre de gravité de la face opposée est appelé médiane. Ainsi, le segment [AA'] est une médiane du tétraèdre ABCD.

- 1. On souhaite démontrer la propriété suivante :
- (\mathcal{P}_1) : Dans un tétraèdre régulier, chaque médiane est orthogonale à la face opposée.
- a. Montrer que $\overline{AA'} \cdot \overline{BD} = 0$ et que $\overline{AA'} \cdot \overline{BC} = 0$. (On pourra utiliser le milieu I du segment [BD] et le milieu J du segment [BC]).
- b. En déduire que la médiane (AA') est orthogonale à la face BCD.

Un raisonnement analogue montre que les autres médianes du tétraèdre régulier ABCD sont également orthogonales à leur face opposée.

2. G est l'isobarycentre des points A, B, C et D.

On souhaite démontrer la propriété suivante :

 (\mathcal{P}_2) : Les médianes d'un tétraèdre régulier sont concourantes en G.

En utilisant l'associativité du barycentre, montrer que G appartient à la droite (AA'), puis conclure.

Partie II

On munit l'espace d'un repère orthonormal $(O; \vec{i}, \vec{j}, \vec{k})$.

On considère les points P(1; 2; 3), Q(4; 2; -1) et R(-2; 3; 0).

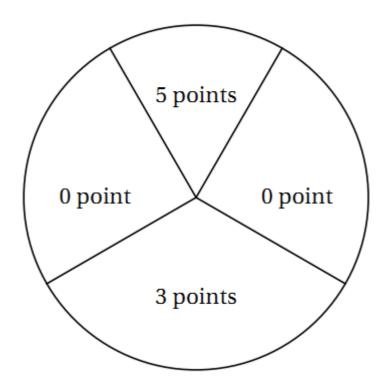
- 1. Montrer que le tétraèdre *OPQR* n'est pas régulier.
- 2. Calculer les coordonnées de P', centre de gravité du triangle OQR.
- 3. Vérifier qu'une équation cartésienne du plan (OQR) est : 3x + 2y + 16z = 0.
- 4. La propriété (\mathcal{P}_1) de la partie 1 est-elle vraie dans un tétraèdre quelconque ?

EXERCICE 3

5 points

Commun à tous les candidats

Un jeu consiste à lancer des fléchettes sur une cible. La cible est partagée en quatre secteurs, comme indiqué sur la figure ci-dessous.



On suppose que les lancers sont indépendants et que le joueur touche la cible à tous les coups.

1. Le joueur lance une fléchette.

On note p_0 la probabilité d'obtenir 0 point.

On note p_3 la probabilité d'obtenir 3 points.

On note p_5 la probabilité d'obtenir 5 points.

On a donc $p_0 + p_3 + p_5 = 1$. Sachant que $p_5 = \frac{1}{2}p_3$ et que $p_5 = \frac{1}{3}p_0$ déterminer les valeurs de p_0, p_3 et p_5 .

2. Une partie de ce jeu consiste à lancer trois fléchettes au maximum. Le joueur gagne la partie s'il obtient un total (pour les 3 lancers) supérieur ou égal à 8 points. Si au bout de 2 lancers, il a un total supérieur ou égal à 8 points, il ne lance pas la troisième fléchette.

On note G_2 l'évènement : « le joueur gagne la partie en 2 lancers ».

On note G_3 l'évènement : « le joueur gagne la partie en 3 lancers ».

On note *P* l'évènement : « le joueur perd la partie ».

On note p(A) la probabilité d'un évènement A.

a. Montrer, en utilisant un arbre pondéré, que $p(G_2) = \frac{5}{36}$.

On admettra dans la suite que $p(G_3) = \frac{7}{36}$

- b. En déduire p(P).
- 3. Un joueur joue six parties avec les règles données à la question 2.

Quelle est la probabilité qu'il gagne au moins une partie ?

4. Pour une partie, la mise est fixée à 2 €.

Si le joueur gagne en deux lancers, il reçoit 5 €. S'il gagne en trois lancers, il reçoit 3 €. S'il perd, il ne reçoit rien.

On note X la variable aléatoire correspondant au gain algébrique du joueur pour une partie. Les valeurs possibles pour X sont donc : -2, 1 et 3.

- a. Donner la loi de probabilité de X.
- b. Déterminer l'espérance mathématique de X. Le jeu est-il favorable au joueur ?