Index

Exercice A page 102 (Bac S La réunion juin 2004).	1
Exercice B page 102 (Bac S France juin 2004)	3
1 0	Baccalauréat S Centres étrangers juin 2004.	
Exercice E page 317	Nouvelle-Calédonie novembre 2000.	7

Exercice A page 102 (Bac S La réunion juin 2004)

f est dérivable sur IR et vérifie:

- (1) pour tout x réel, $(f'(x))^2 (f(x))^2 = 1$
- (2) f'(0) = 1
- (3) la fonction f' est dérivable sur \mathbb{R} .

1 a)
$$(f'(x))^2 - (f(x))^2 = 1 \Leftrightarrow (f'(x))^2 = 1 + (f(x))^2$$

Comme
$$(f(x))^2 \ge 0$$
, on a: $(f'(x))^2 \ge 1$, soit: $f'(x) \le -1$ ou $f'(x) \ge 1$.

pour tout x réel, $f'(x) \neq 0$

ou par l'absurde:

Supposons qu'il existe une valeur a réelle telle que f'(a) = 0, on a alors d'après (1): $-(f(a))^2 = 1$, ce qui est impossible.

Il n'existe aucun réel x tel que f'(x) = 0

pour tout x réel, $f'(x) \neq 0$

b) D'après (1),
$$(f'(0))^2 - (f(0))^2 = 1$$
 et d'après (2): $(f'(0))^2 = 1$

Par conséquent: $(f(0))^2 = 0$

Conclusion: f(0) = 0

2) D'après (3), f' est dérivable sur \mathbb{R} .

Le premier membre de l'égalité (1) se dérive en $x \mapsto 2 \times f''(x) \times f'(x) - 2 \times f'(x) \times f(x)$

Le second membre de l'égalité (1) se dérive en $x \mapsto 0$

L'égalité (1) implique:
$$2 \times f''(x) \times f'(x) - 2 \times f'(x) \times f(x) = 0$$
, soit

$$2f'(x)(f''(x) - f(x)) = 0$$

Comme
$$f'(x) \neq 0$$
, il vient $f''(x) - f(x) = 0$

(4): Pour tout nombre réel x, f''(x) = f(x).

- 3) On pose u = f' + f et v = f' f.
- a) u(0) = f'(0) f(0) = 1 et v(0) = ... = 1
- b) u et v, étant la somme ou la différence de fonctions dérivables sur \mathbb{R} , sont dérivables sur \mathbb{R} . pour tout x réel, u'(x) = f''(x) + f'(x) = f(x) + f'(x) = u(x) (car f''(x) = f(x))

pour tout x réel,
$$v'(x) = f''(x) - f'(x) = f(x) - f'(x) = -(f'(x) - f(x)) = -v(x)$$
.

c) La fonction u est donc la solution de l'équation différentielle y'=y prenant la valeur 1 en 0.

On sait d'après le cours que c'est la fonction exponentielle de base e.

Pour tout x réel, $u(x) = e^x$

La fonction v est donc la solution de l'équation différentielle v' = -v prenant la valeur 1 en 0.

On a alors: pour tout x réel, $v(x) = Ce^{-x}$ et v(0) = 1, d'où, C = 1

Pour tout x réel, $v(x) = e^{-x}$

"J'ai toujours pensé qu'il n'avait pas assez d'imagination pour devenir mathématicien !" *Hilbert, David*au sujet d'un étudiant qui a renoncé aux mathématiques pour la poésie

1/10

E:\docs lycee 10 11\TS\DM\DM5.odt 06/01/11

d) Par définition de u et v, on a: 2f = u - v, d'où, pour tout x réel, $2f(x) = e^x - e^{-x}$

$$f(x) = \frac{e^x - e^{-x}}{2}$$

4a) On sait: $\lim_{x \to +\infty} e^x = +\infty$ et $\lim_{x \to +\infty} e^{-x} = 0$, donc, (somme de fonctions) $\lim_{x \to +\infty} f(x) = +\infty$.

$$\lim_{x \to -\infty} e^x = 0 \text{ et } \lim_{x \to -\infty} e^{-x} = +\infty \text{ , donc, } \lim_{x \to -\infty} f(x) = -\infty.$$

b)
$$f'(x) = \frac{e^x + e^{-x}}{2}$$
 (Soit on remarque $2f' = u + v$, soit on dérive ...)

Comme pour tout X, $e^X > 0$, f'(x) > 0 et f est strictement croissante sur \mathbb{R} .

x	$-\infty$	$+\infty$
f'(x)	+	
f(x)	-8	√ +∞

5) a) D'après les questions précédentes:

f est dérivable sur \mathbb{R} , donc, continue sur \mathbb{R} .

f est strictement croissante sur \mathbb{R} ,

donc, f réalise une bijection de \mathbb{R} sur $f(\mathbb{R}) = \lim_{x \to -\infty} f(x)$; $\lim_{x \to +\infty} f(x) = \mathbb{R}$.

Conclusion:

Pour tout $m \in \mathbb{R}$, l'équation f(x) = m a une et une seule solution réelle.

b) f(x) = 3 a pour solution α telle que $f(\alpha) = 3$

Résolution de
$$\frac{e^x - e^{-x}}{2} = 3$$

$$\frac{e^{x} - e^{-x}}{2} = 3 \Leftrightarrow e^{x} - e^{-x} = 6$$

$$\Leftrightarrow (e^{x})^{2} - 6 e^{x} - 1 = 0$$

$$\Leftrightarrow \begin{cases} X = e^{x} \\ X^{2} - 6X - 1 = 0 \end{cases}$$

Résolution de l'équation du second degré: discriminant $\Delta = b^2 - 4ac = 40 = 2 \sqrt{10}$

L'équation en X a deux solutions: $X_1 = 3 - \sqrt{10}$ et $X_2 = 3 + \sqrt{10}$

Comme $e^x > 0$, la seule solution acceptable est $e^x = 3 + \sqrt{10}$.

On cherche donc l'antécédent par la fonction exponentielle de $3 + \sqrt{10}$

 $x = \ln(3 + \sqrt{10})$

La calculatrice donne : la fonction réciproque de l'exp; est la fonction ln.

 $\alpha = 1.82$ à 10^{-2} près par excès.

Exercice B page 102 (Bac S France juin 2004)

Les lois de Newton conduisent à l'équation différentielle (E): 25x' + 200x'' = 50

où x' est la dérivée première et x'' la dérivée seconde de la fonction x par rapport au temps

x est la loi horaire (fonction en mathématique) du mouvement.

Le terme 25 x' est la valeur de la force de frottement due à la résistance (x' est la fonction donnant la vitesse)

Le terme 200x'' est la valeur de la force due à l'accélération pour une masse de 200 kg.

50 est la valeur de la force d'entraînement.

Dans tout l'exercice $t \ge 0$

1) On pose v(t) = x'(t) d'où, v'(t) = x''(t).

En remplaçant dans(E): on a:

$$\begin{cases} 25 x' + 200 x'' = 50 \\ v(t) = x'(t) \\ v'(t) = x''(t) \end{cases}$$
équivaut à
$$\begin{cases} 25 v(t) + 200 v'(t) = 50 \\ v(t) = x'(t) \\ v'(t) = x''(t) \end{cases}$$

En divisant par 200 et en réorganisant, on a: (E) équivaut à (F): $v' = -\frac{1}{8}v + \frac{1}{4}$.

(Ne pas oublier de montrer l'équivalence)

L'équation (F) est de la forme y' = ay + b, d'où, en appliquant le cours, il vient:

avec
$$a = -\frac{1}{8}$$
, $b = \frac{1}{4}$ et $-\frac{b}{a} = 2$

Pour
$$t \ge 0$$
, $v(t) = C e^{-\frac{1}{8}t} + 2 \text{ avec } C \in \mathbb{R}$.

2) Les conditions initiales sont x(0) = 0 et x'(0) = 0

a) On a:
$$x'(t) = v(t) = C e^{-\frac{1}{8}t} + 2 \text{ et } v(0) = 0$$
,

d'où,
$$C e^0 + 2 = 0$$
, soit: $C = -2$, puisque $e^0 = 1$.

$$x'(t) = -2 e^{-\frac{1}{8}t} + 2$$

 $x'(t) = -2 e^{-\frac{1}{8}t} + 2$ b) Les fonctions x qui ont pour dérivée x' sont de la forme:

$$x(t) = -2 \times \frac{1}{-\frac{1}{8}} \times e^{-\frac{1}{8}t} + 2t + K \text{ où } K \in \mathbb{R}.$$

Soit
$$x(t) = 16 e^{-\frac{1}{8}t} + 2t + K \text{ où } K \in \mathbb{R}$$
.
Or, $x(0) = 0$, d'où, $16 + K = 0$.

Or,
$$x(0) = 0$$
, d'où, $16 + K = 0$.

Conclusion:
$$x(t) = 16 e^{-\frac{1}{8}t} + 2t - 16 \text{ avec } t \ge 0$$

On sait: $\lim_{X \to -\infty} e^X = 0$, d'où, comme $\lim_{t \to +\infty} -\frac{1}{8}t = -\infty$, on a, d'après la limite de fonction composée:

$$\lim_{t\to+\infty} e^{-\frac{1}{8}t} = \lim_{X\to-\infty} e^X = 0.$$

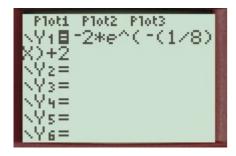
Conclusion:
$$\lim_{t \to +\infty} (-2 e^{-\frac{1}{8}t} + 2) = 2$$

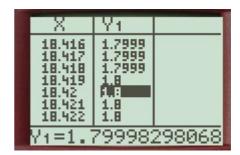
La vitesse limite V = 2 (m.s⁻¹)

On cherche *t* telle que $v(t) \le 0.9 \times V$, soit, $-2 e^{-\frac{1}{8}t} + 2 \le 1.8$ $-2 e^{-\frac{1}{8}t} + 2 \le 1.8$ équivaut à $e^{-\frac{1}{8}t} \ge 0.1$

Avant d'étudier le logarithme népérien:

En remarquant que la fonction v est croissante, un encadrement à la calculatrice donne:





 $t \ge 18,421$ (valeur approchée à 10^{-3})

Après l'étude le logarithme népérien:

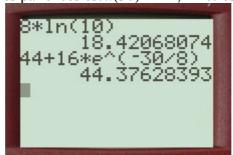
$$e^{-\frac{1}{8}t} \ge 0.1 \text{ équivaut à } -\frac{1}{8} t \le \ln 0.1$$

Or,
$$\ln 0.1 = -\ln 10$$

d'où, $v(t) \le 0.9 \times V$ équivaut à $t \ge 8 \ln 10$

Une valeur approchée de 8 ln 10 est 18,4206 ...

La distance parcourue en 30 secondes est $x(30) = 2 \times 30 - 16 + 16$ e $\frac{-\frac{30}{8}}{} = 44 + 16$ e $\frac{-\frac{30}{8}}{}$ Une valeur approchée au décimètre près par excès est $x(30) \approx 44.4$ mètres



exercice C page 222 Baccalauréat S Centres étrangers juin 2004

Un employé se rend à son travail en bus. S'il est à l'heure, il prend le bus de ramassage gratuit mis à disposition par l'entreprise, s'il est en retard, il prend le bus de la ville, il lui en coûte 1,50 €.

"J'ai toujours pensé qu'il n'avait pas assez d'imagination pour devenir mathématicien !" *Hilbert, David*au sujet d'un étudiant qui a renoncé aux mathématiques pour la poésie
4/10 E:\docs_lycee_10_11\TS\DM\DM5.odt 06/01/11

Si l'employé est à l'heure un jour donné, la probabilité qu'il soit en retard le lendemain est $\frac{1}{5}$; s'il est en retard un jour donné la probabilité qu'il soit en retard le lendemain est $\frac{1}{20}$.

Pour tout entier naturel non nul n, on appelle R_n l'évènement : « l'employé est en retard le jour n ». On note P_n , la probabilité de R_n et q_n , celle de $\overline{R_n}$. On suppose que $P_1=0$.

1. Détermination d'une relation de récurrence.

(Voir l'arbre de probabilité à la fin de l'exercice)

a. Déterminer les probabilités conditionnelles $p_{Rn}(R_{n+1})$ et $p_{\overline{Rn}}(R_{n+1})$.

 $p_{Rn}(R_{n+1}) = \frac{1}{20}$ (Traduction de la phrase: s'il est en retard un jour donné la probabilité qu'il soit en retard le lendemain est $\frac{1}{20}$.)

 $p_{\overline{Rn}}(R_{n+1}) = \frac{1}{5}$ (Traduction de la phrase: Si l'employé est à l'heure un jour donné, la probabilité qu'il soit en retard le lendemain est $\frac{1}{5}$.)

b. Déterminer $p(R_{n+1} \cap R_n)$ en fonction de p_n et $p(R_{n+1} \cap \overline{R_n})$ en fonction de q_n .

$$p(R_{n+1} \cap R_n) = p_{Rn}(R_{n+1}) \times p(R_n) = \frac{1}{20} p_n.$$

$$p(R_{n+1} \cap \overline{R_n}) = p_{\overline{Rn}}(R_{n+1}) \times p(\overline{R_n}) = \frac{1}{5} q_n$$

c. Exprimer p_{n+1} en fonction de p_n et de q_n .

$$p_{n+1} = p(R_{n+1}) = p(R_{n+1} \cap R_n) + p(R_{n+1} \cap \overline{R_n}) = \frac{1}{20} p_n + \frac{1}{5} q_n$$

d. En déduire que $p_{n+1} = \frac{1}{5} - \frac{3}{20} p_n$

Or,
$$p_n + q_n = 1$$
, d'où, $p_{n+1} = \frac{1}{20} p_n + \frac{1}{5} (1 - p_n) = \frac{1}{5} - \frac{3}{20} p_n$.

2. Étude de la suite (p_n)..

Pour tout entier naturel non nul n, on pose $v_n = p_n - \frac{4}{23}$.

a. Démontrer que (v_n) est une suite géométrique de raison $-\frac{3}{20}$.

Méthode:

On exprime le **nombre** v_{n+1} en fonction du nombre v_n

Pour cela: d'après la définition de la **suite** (v_n) , on écrit le nombre v_{n+1} en fonction du nombre p_{n+1} puis, d'après l'égalité définissant la suite (p_n) on exprime v_{n+1} en fonction de p_n et on revient par l'égalité définissant la suite (v_n) à une relation en fonction de v_n .

Calculs:

$$v_{n+1} = p_{n+1} - \frac{4}{23}$$
 d'après la définition de la suite (v_n)

$$v_{n+1} = \frac{1}{5} - \frac{3}{20} p_n - \frac{4}{23}$$
 d'après la définition de la suite (p_n)

Or,
$$p_n = v_n + \frac{4}{23}$$
, d'après la définition de la suite (v_n)

d'où,
$$v_{n+1} = \frac{1}{5} - \frac{3}{20} (v_n + \frac{4}{23}) - \frac{4}{23} = -\frac{3}{20} v_n + \frac{1}{5} - \frac{3}{20} \times \frac{4}{23} - \frac{4}{23}$$

Comme
$$\frac{1}{5} - \frac{3}{20} \times \frac{4}{23} - \frac{4}{23} = \frac{1}{5} - \frac{4}{23} \left(\frac{3}{20} + 1 \right) = \frac{1}{5} - \frac{4}{23} \times \frac{23}{20} = \frac{1}{5} - \frac{1}{5} = 0$$

On en déduit:
$$v_{n+1} = -\frac{3}{20} v_n$$

$$(v_n)$$
 est une suite géométrique de raison $-\frac{3}{20}$ de premier terme $v_1 = 0 - \frac{4}{23} = -\frac{4}{23}$.

b. Exprimer v_n puis p_n en fonction de n.

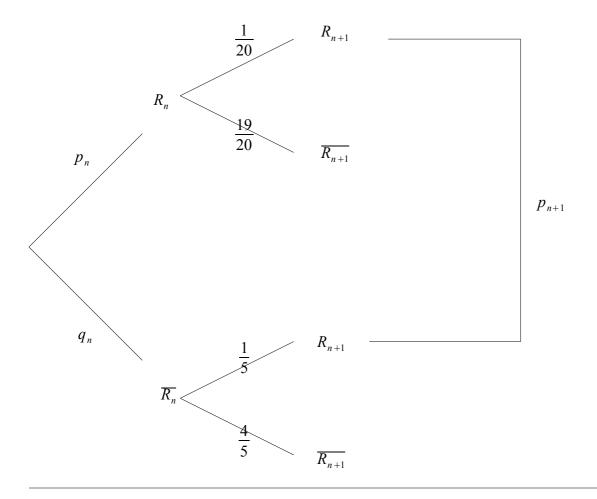
Par conséquent:
$$v_n = -\frac{4}{23} \left(-\frac{3}{20}\right)^{n-1}$$
 et $p_n = -\frac{4}{23} \left(-\frac{3}{20}\right)^{n-1} + \frac{4}{23}$.

c. Justifier que la suite (p_n) est convergente et calculer sa limite.

Comme $-1 < -\frac{3}{20} < 1$, la suite géométrique (v_n) converge vers 0, et, la suite (p_n) converge vers $\frac{4}{23}$.

Arbre de probabilité

Jour n Jour n + 1



Exercice E page 317 .Nouvelle-Calédonie novembre 2000

1.a. Résoudre dans \mathbb{C} l'équation $z^2 - 2z + 2 = 0$.

discriminant
$$\Delta = b^2 - 4ac = -4 = 4i^2 = (2 i)^2$$

Les solutions dans \mathbb{C} sont donc les complexes conjugués: $z_1 = 1 - i$ et $z_2 = \overline{z_1} = 1 + i$ Préciser le module et un argument de chacune des solutions.

$$|1-i| = |1+i| = \sqrt{2}$$
 et **un** argument θ_1 de z_1 est $-\frac{\pi}{4}$ et θ_2 de z_2 est $\theta_2 = -\theta_1 = \frac{\pi}{4}$.

Écriture exponentielle des solutions: $z_1 = \sqrt{2}$ $e^{-i\pi/4}$ et $z_2 = \sqrt{2}$ $e^{i\pi/4}$

b. En déduire les solutions dans C de l'équation

$$(-iz + 3i + 3)^2 - 2(-iz + 3i + 3) + 2 = 0.$$

D'après le a), les solutions de cette équation sont les solutions des deux équations suivantes:

"J'ai toujours pensé qu'il n'avait pas assez d'imagination pour devenir mathématicien !" *Hilbert, David*au sujet d'un étudiant qui a renoncé aux mathématiques pour la poésie

7/10 E:\docs_lycee_10_11\TS\DM\DM5.odt 06/01/11

$$-iz + 3i + 3 = 1 - i$$
 et $-iz + 3i + 3 = 1 + i$

$$-iz + 3i + 3 = 1 - i \Leftrightarrow -iz = -2 - 4i \Leftrightarrow z = -2i + 4$$
 (remarguer: $-iz \times i = z$)

$$-iz + 3i + 3 = 1 + i \Leftrightarrow -iz = -2 - 2i \Leftrightarrow z = -2i + 2$$

Les solutions de $(-iz + 3i + 3)^2 - 2(-iz + 3i + 3) + 2 = 0$ sont $\{4 - 2i; 2 - 2i\}$

- 2. Le plan est rapporté à un repère orthonormal direct $(O; \vec{u}, \vec{v})$ d'unité graphique 2 cm. On considère les points A, B et C d'affixes respectives $z_A = 1 + i$, $z_B = \overline{z_A}$, $z_C = 2z_B$.
- a. Déterminer les formes algébriques de $z_{\rm B}$ et $z_{\rm C}$.

$$z_A = 1 + i$$
, $z_B = \overline{z_A} = 1 - i$, $z_C = 2z_B = 2 - 2i$.

- b. Placer les points A, B et C
- c. Montrer que les points A, B et C appartiennent au cercle ($\mathscr C$) de centre I d'affixe 3 et de rayon $\sqrt{5}$.

$$IA = |z_A - z_I| = |1 + i - 3| = |-2 + i| = \sqrt{(-2)^2 + 1^2} = \sqrt{5}$$

$$IB = \dots = |-2 - i| = \sqrt{5}$$

$$IC = ... = |-1-2i| = \sqrt{5}$$

d. Calculer
$$\frac{z_C - 3}{z_A - 3}$$
.

$$\frac{z_C - 3}{z_A - 3} = \frac{-1 - 2i}{-2 + i} = \frac{i(i - 2)}{-2 + i} = i$$

en déduire la nature du triangle IAC.

Le résultat précédent montre que: $z_C - z_I = i(z_A - z_I)$, d'où,

C est l'image de A dans la rotation de centre I et d'angle $\frac{\pi}{2}$ (quart de tour de centre I direct)

IAC est un triangle rectangle isocèle direct en *I*.

e. Le point E est l'image du point O par la translation de vecteur 2 \overrightarrow{IC} . Déterminer l'affixe du point E.

L'affixe de 2 \overrightarrow{IC} est 2(-1-2i) = -2-4i

On a donc
$$z_E = 0 + (-2 - 4i) = -2 - 4i$$

f. Le point D est l'image du point E par la rotation de centre O et d'angle $\frac{\pi}{2}$. Déterminer l'affixe du point D.

D'après l'écriture complexe d'une rotation, on a: $z_D - z_0 = e^{i\pi/2} (z_E - z_0)$

$$z_D = i z_E = 4 - 2i$$

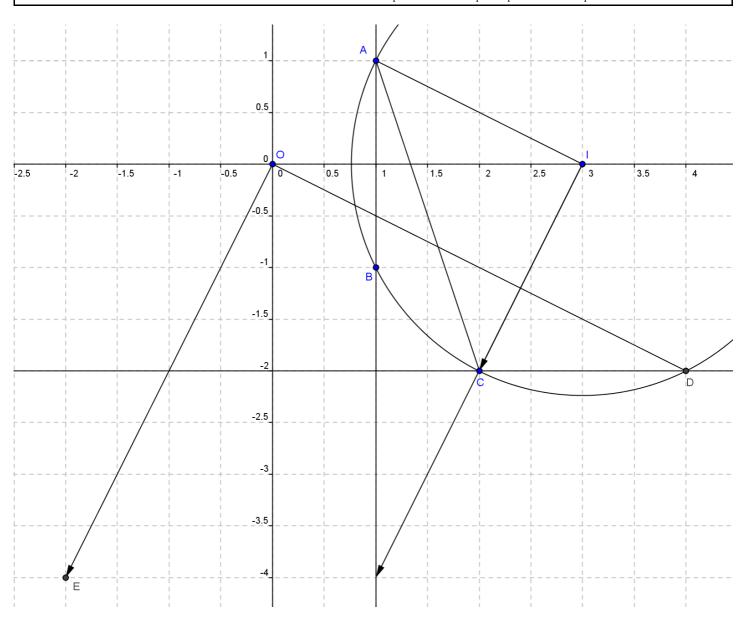
g. Démontrer que les droites (AB) et (CD) sont perpendiculaires.

La droite (AB) est parallèle à l'axe des ordonnées puisque les points A et B ont la même abscisse (leurs affixes sont des complexes conjugués)

La droite (CD) est parallèle à l'axe des abscisses puisque les points C et D ont la même ordonnée -2.

DM5

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

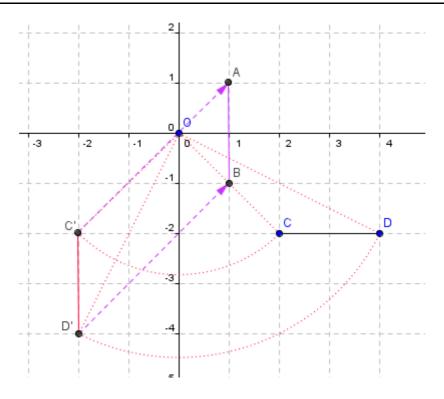


Quelques remarques à propos des 1a) et 1b)

On considère la transformation $T: z \mapsto -iz + 3i + 3$ qui peut se décomposer en une rotation r de centre O et d'angle $-\frac{\pi}{2}$ suivie d'une translation t de vecteur \vec{w} d'affixe 3+3i.

En effet : $z \stackrel{r}{\rightarrow} -iz \stackrel{t}{\rightarrow} -iz + 3 + 3i$

D'après les calculs du 1b), le point C d'affixe 2-2i a pour image par T le point A d'affixe 1+i. et le point D d'affixe 4-2i a pour image par T le point B d'affixe 1-i.



Le segment [CD] a pour image un segment [C'D'] par r tel que CD = C'D' et $(CD) \perp (C'D')$ et le segment [C'D'] a pour image le segment [AB] tel que AB = C'D' et $(AB) \parallel (C'D')$

Autre remarque:

En montrant au 2d) que $\frac{z_C - 3}{z_A - 3} = i$, on montre que C est l'image de A par la rotation de centre I d'affixe 3 et d'angle $\frac{\pi}{2}$.

On montre de même façon que
$$\frac{z_D - 3}{z_B - 3} = i$$
 $(z_D - 3 = 4 - 2i - 3 = 1 - 2i \text{ et } z_B - 3 = 1 - i - 3 = -2 - i$ et $i(-2 - i) = 1 - 2i$)

Le segment [CD] est donc l'image du segment [AB] par la rotation de centre I d'affixe 3 et d'angle $\frac{\pi}{2}$., d'où, AB = CD et $(AB) \perp (CD)$