Index

1/ Les fonctions exponentielles. 2/ les fonctions puissances.... 3/ La fonction $x \mapsto xx$ définie sur $]0; +\infty[$.

On a montré en cours que, pour tout réel a strictement positif (a > 0), pour tout entier relatif n $(n \in \mathbb{Z})$:

$$\ln a^n = n \ln a \quad (1)$$

On en déduit en **appliquant** la fonction exponentielle, l'égalité (2) : $a^n = e^{n \ln a}$

Nouvelle définition de la puissance d'un réel strictement positif.

Soit *a* un réel strictement positif et *b* un réel.

On appelle *a* puissance *b*, le nombre noté a^b , défini par $a^b = e^{b \ln a}$ (3)

Cette définition inclut celle du collège d'après le rappel précédent.

Des études de fonctions.

Pour chacune des fonctions, étudier les limites aux bornes du domaine de définition, la dérivée, les variations et la représentation graphique (asymptotes éventuellement).

1/Les fonctions exponentielles.

On fait varier l'exposant (le facteur a est constant)

On construit ainsi une fonction définie sur \mathbb{R} par $x \mapsto a^x$ (exponentielle de base a)

En remarquant que la fonction $x \mapsto a^x$ est la composée: $x \mapsto x \ln a \mapsto e^{x \ln a}$,

étudier les deux fonctions suivantes: $x \mapsto 2^x \text{ et } x \mapsto \left(\frac{1}{2}\right)^x$

2/les fonctions puissances.

On fait varier le facteur (l'exposant b est constant)

On construit ainsi une fonction définie sur $]0; +\infty[$ par $x \mapsto x^b$

En remarquant que la fonction $x \mapsto x^b$ est la composée: $x \mapsto b \ln x \mapsto e^{b \ln x}$,

étudier les trois fonctions suivantes: $x \mapsto x^{-\frac{2}{3}}$; $x \mapsto x^{\frac{1}{3}}$; $x \mapsto x^{\frac{4}{3}}$

3/La fonction $x \mapsto x^x$ définie sur $[0; +\infty]$

Étudier sur $]0; +\infty[$ la fonction $x \mapsto x^x$

« C'est à force d'observations, de réflexion que l'on trouve. Ainsi, piochons, piochons continuellement» 1/1

Claude Monet