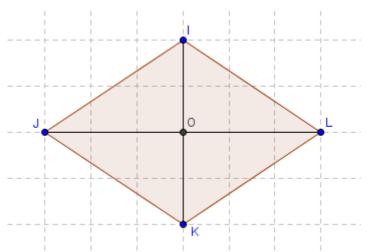
8 page 334

IJKL est un losange tel que IK = 4 et JL = 6. (Autrement dit : les longueurs des diagonales)



En appelant O le centre du losange et en sachant que les diagonales sont perpendiculaires en O, que $\overrightarrow{IL} = \overrightarrow{JK}$, on obtient :

1)
$$\overrightarrow{IL} \cdot \overrightarrow{LJ} = \overrightarrow{OL} \cdot \overrightarrow{LJ} = -\frac{1}{2} \overrightarrow{LJ}^2 = -\frac{1}{2} LJ^2 = -18$$

$$\overrightarrow{IL} \cdot \overrightarrow{JK} = \overrightarrow{IL} \cdot \overrightarrow{IL} = IL^2 = 2^2 + 3^2 = 13$$

$$\overrightarrow{IL} \cdot \overrightarrow{IK} = \overrightarrow{IO} \cdot \overrightarrow{IK} = \frac{1}{2} IK^2 = 8$$

2)
$$\overrightarrow{IL} \cdot \overrightarrow{IJ} = IL.IJ.\cos(\overrightarrow{IL}, \overrightarrow{IJ})$$

$$\overrightarrow{IL} \cdot \overrightarrow{IJ} = \overrightarrow{IL} \cdot (\overrightarrow{IL} + \overrightarrow{LJ}) = \overrightarrow{IL} \cdot \overrightarrow{IL} + \overrightarrow{IL} \cdot \overrightarrow{LJ} = 13 - 18 = -5$$

De l'égalité : $IL.IJ.\cos(\vec{IL},\vec{IJ}) = -5$ et comme $IL = IJ = \sqrt{13}$, on obtient : $\cos(\vec{IL},\vec{IJ}) = \frac{-5}{13}$

Approximation (en degré):

La calculatrice donne $\widehat{JIL} \approx 112,6^{\circ}$

17 page 334

Dans un repère orthonormal du plan, A(1; 2), B(-3; 1) et I milieu de [AB].

1) $\overline{AB} \cdot \overline{AM} = 0$ si et seulement si \overline{AM} et \overline{AB} sont orthogonaux.

L'ensemble des points M vérifiant $\overline{AB} \cdot \overline{AM} = 0$ est la perpendiculaire à (AB) passant par A.

C'est donc la droite passant par A de vecteur normal \overrightarrow{AB} .

$$\overrightarrow{AB}$$
 $\begin{pmatrix} -4 \\ -1 \end{pmatrix}$ et \overrightarrow{AM} $\begin{pmatrix} x-1 \\ y-2 \end{pmatrix}$,

$$\overrightarrow{AB} \cdot \overrightarrow{AM} = -4(x-1) + (-1)(y-2) = -4x - y + 6$$

L'ensemble des points M(x; y) vérifiant $\overline{AB} \cdot \overline{AM} = 0$ est caractérisée par l'équation -4x - y + 6 = 0 (ou encore : y = 4x - 6)

2) $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ si et seulement si \overrightarrow{MA} et \overrightarrow{MB} sont orthogonaux.

L'ensemble des points M vérifiant $\overline{MA} \cdot \overline{MB} = 0$ est le cercle de diamètre [AB].

$$\overrightarrow{MA}$$
 $\begin{pmatrix} 1-x \\ 2-y \end{pmatrix}$ et \overrightarrow{MB} $\begin{pmatrix} -3-x \\ 1-y \end{pmatrix}$,

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = (1-x)(-3-x) + (2-y)(1-y) = -3 + 2x + x^2 + 2 - 3y + y^2 = x^2 + y^2 + 2x - 3y - 1$$

L'ensemble des points M(x; y) vérifiant $\widehat{MA} \cdot \widehat{MB} = 0$ est caractérisée par l'équation $x^2 + y^2 + 2x - 3y - 1 = 0$ (ou encore : $(x + 1)^2 - 1 + (y - \frac{3}{2})^2 - \frac{9}{4} - 1 = 0$, soit : $(x + 1)^2 + (y - \frac{3}{2})^2 = \frac{17}{4}$

Cercle de centre $I(-1; \frac{3}{2})$ et de rayon $\frac{\sqrt{17}}{2}$

3) $(\overline{MA} + \overline{MB}) \cdot \overline{MA} = 2 \ \overline{MI} \cdot \overline{MA}$ (Car, $\overline{MA} + \overline{MB} = 2 \ \overline{MI}$ (propriété du barycentre oeu propriété du parallélogramme selon le point de vue)

 $(\overrightarrow{MA} + \overrightarrow{MB}) \cdot \overrightarrow{MA} = 0$ si et seulement si $\overrightarrow{MI} \cdot \overrightarrow{MA} = 0$ si et seulement si \overrightarrow{MA} et \overrightarrow{MI} sont orthogonaux.

L'ensemble des points M vérifiant $(\overline{MA} + \overline{MB}) \cdot \overline{MA} = 0$ est le cercle de diamètre [AI].

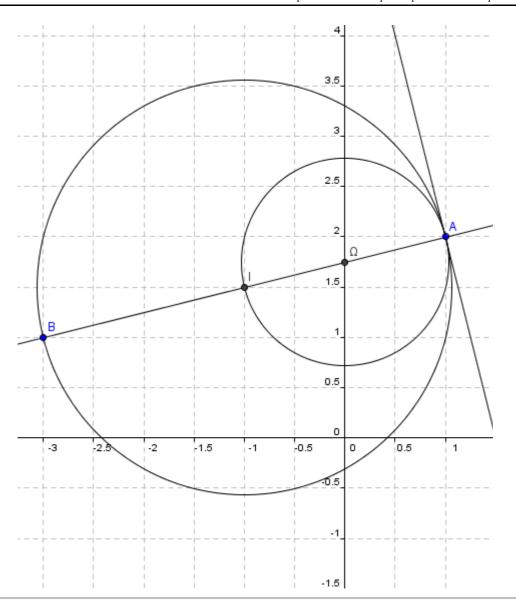
$$\overline{MA}$$
 $\begin{pmatrix} 1-x \\ 2-y \end{pmatrix}$ et \overline{MI} $\begin{pmatrix} -1-x \\ \frac{3}{2}-y \end{pmatrix}$

$$\overrightarrow{MI} \cdot \overrightarrow{MA} = (1-x)(-1-x) + (2-y)(\frac{3}{2}-y) = -1 + x^2 + 3 - \frac{7}{2}y + y^2 = x^2 + y^2 - \frac{7}{2}y + 2$$

L'ensemble des points M(x; y) vérifiant $(\overline{MA} + \overline{MB}) \cdot \overline{MA} = 0$ est caractérisée

par l'équation $x^2 + y^2 - \frac{7}{2}y + 2 = 0$ (ou encore : $x^2 + (y - \frac{7}{4})^2 - \frac{49}{16} + 2 = 0$, soit : $(x + 1)^2 + (y - \frac{7}{4})^2 = \frac{17}{16}$

Cercle de centre $\Omega(0\;;\;\frac{7}{4}\;)$ et de rayon $\;\frac{\sqrt{17}}{4}\;$,



21 page 335

Dans un repère orthonormal, A(1;-1), B(-4;-3) et C(2;5)

1)
$$\overrightarrow{AB}$$
 $\begin{pmatrix} -5 \\ -2 \end{pmatrix}$ et \overrightarrow{AC} $\begin{pmatrix} 1 \\ 6 \end{pmatrix}$ ne sont pas colinéaires (en effet : $-5 \times 6 \neq -2 \times 1$)

Les points A, B et C ne sont pas alignés.

2a) Hauteur du triangle ABC issue de A:

On cherche une équation de la droite Δ passant par A et de vecteur normal \overrightarrow{BC}

$$\overrightarrow{BC}$$
 $\begin{pmatrix} 6 \\ 8 \end{pmatrix}$ et \overrightarrow{AM} $\begin{pmatrix} x-1 \\ y+1 \end{pmatrix}$

 $M(x; y) \in \Delta$ si et seulement si $\overrightarrow{AM} \cdot \overrightarrow{BC} = 0$ si et seulement si 6(x-1) + 8(y+1) = 0

Une équation de Δ est : 3x + 4y + 1 = 0

b) Une méthode :

Soit H le pied de la hauteur issue de A.

H est le point d'intersection de (BC) et de Δ .

 $H \in (BC)$ si et seulement si $\overrightarrow{BH} = t \overrightarrow{BC}$ où $t \in \mathbb{R}$.

On a donc:
$$\begin{cases} x_H - x_B = t \times 6 \\ y_H - y_B = t \times 8 \end{cases}$$
, soit: $x_H = -4 + 6t$ et $y_H = -3 + 8t$.

Dans l'équation de
$$\Delta$$
, il vient : $3(-4+6t)+4(-3+8t)+1=$, d'où, $t=\frac{23}{50}$

$$x_{\rm H} = -4 + 6 \times \frac{23}{50} = -\frac{62}{50} = -1,24 \text{ et } y_{\rm H} = -3 + 8 \times \frac{23}{50} = \frac{34}{50} = 0,68$$

$$\overline{AH}$$
 $\begin{pmatrix} \frac{-62}{50} - 1\\ \frac{34}{50} + 1 \end{pmatrix}$, soit, \overline{AH} $\begin{pmatrix} \frac{-112}{50}\\ \frac{84}{50} \end{pmatrix}$ et $AH^2 = \frac{(-112)^2 + 84^2}{50^2} = \frac{140^2}{50^2}$, $AH = \frac{14}{5} = 2,8$

Autre méthode :

AH est la distance du point A à la droite (BC).

On cherche alors une équation de (BC):

 $M(x; y) \in (BC)$ si et seulement si \overline{BM} et \overline{BC} colinéaires.

La relation de colinéarité de deux vecteurs mène à : 8(x + 4) - 6(y + 3) = 0, soit : 8x - 6y + 14 = 0

Une équation de (BC) est : 4x - 3y + 7 = 0

La distance de *A* à (*BC*) est donnée par
$$d = \frac{|4 \times 1 - 3 \times (-1) + 7|}{\sqrt{4^2 + 3^2}} = \frac{14}{5} = 2,8$$

3/ Les données précédentes permettent de connaître les trois longueurs des côtés :

$$BC = \sqrt{6^2 + 8^2} = 10, AC = \sqrt{1^2 + 6^2} = \sqrt{37} \text{ et } BA = \sqrt{5^2 + 2^2} = \sqrt{29}$$

Aire du triangle ABC,

$$\mathcal{A} = \frac{BC \times AH}{2} = \frac{10 \times 2.8}{2} = 14$$

4/ Hauteur issue de *B* de longueur h_1 est telle que $\mathcal{A} = \frac{AC \times h_1}{2}$, d'où, $h_1 = \frac{28}{\sqrt{37}}$

Hauteur issue de C de longueur h_2 est telle que $\mathcal{A} = \frac{BA \times h_2}{2}$, d'où, $h_2 = \frac{28}{\sqrt{29}}$

Exercice A page 344 (Asie juin 2003)

L'espace est rapporté au repère orthonormal $(O; \vec{i}, \vec{j}, \vec{k})$

$$A(3;-2;2); B(6;1;5); C(6;-2;-1)$$

Partie I

donc $\overline{AB}(3;3;3)$ et $\overline{AC}(3;0;-3)$

1) On a:
$$\overline{AB}$$
 $\begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}$ et \overline{AC} $\begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix}$, d'où, $\overline{AB} \cdot \overline{AC} = 3 \times 3 + 3 \times 0 + 3 \times (-3) = 0$

Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont orthogonaux, d'où ABC est un triangle rectangle en A

2) \mathcal{P} plan d'équation x + y + z - 3 = 0

Un vecteur normal de P est \vec{n} $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Comme $\overline{AB} = 3 \vec{n}$, la droite (AB) est orthogonale à \mathcal{P} .

D'autre part, les coordonnées de A vérifient l'équation de \mathscr{P} .

 \mathscr{S} est donc orthogonal à (AB) et passe par A.

3) $\mathcal{P}' \perp (AC)$ et passant par A.

 $M(x; y; z) \in \mathscr{P}'$ si et seulement si $\overline{AM} \cdot \overline{AC} = 0$ si et seulement si 3(x-3) + 0(y-2) - 3(z-2) = 0,

Une équation de (P') est x-z-1=0

4) Un point $M(x; y; z) \in \Delta$ intersection de (P) et (P') si et seulement si ses coordonnées sont solutions du

système
$$\begin{cases} x+y+z-3=0 \\ x-z-1=0 \end{cases}$$
 si et seulement si
$$\begin{cases} x=t \\ y=-2t+4 \\ z=-1+t \end{cases}$$

système $\begin{cases} x+y+z-3=0\\ x-z-1=0 \end{cases}$ si et seulement si $\begin{cases} x=t\\ y=-2\,t+4 \end{cases} t\in\mathbb{R}$ Remarquer: $\vec{u} = \begin{pmatrix} 1\\ -2\\ -1 \end{pmatrix}$, un vecteur directeur de Δ , est orthogonal à \overline{AB} et à \overline{AC} .

Lorsque t=3, on obtient les coordonnées de A

Partie II

$$\overrightarrow{AD} \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix}, \text{ Comme } \overrightarrow{AD} \cdot \overrightarrow{AB} = \dots = 0 \text{ et } \overrightarrow{AD} \cdot \overrightarrow{AC} = \dots = 0, \text{ la droite } (AD) \text{ est orthogonale au plan } (ABC)$$
2) Volume de $ABCD$ est $V = \frac{1}{3}$ $Aire(ABC) \times AD$ puisque AD est la longueur de la hauteur relative à la base

ABC.

ABC rectangle en A, d'où : Aire
$$(ABC) = \frac{AB \times AC}{2} = \frac{3\sqrt{3} \times 3\sqrt{2}}{2} = \frac{9\sqrt{6}}{2}$$

$$AD = ... = 3 \sqrt{6}$$

 $V = ... = 27$

3)
$$\overrightarrow{DB} \cdot \overrightarrow{DC} = DB \times DC \cos \widehat{BDC}$$
, et $\overrightarrow{DB} \cdot \overrightarrow{DC} = 6 \times 6 + (-3) \times (-6) + 6 \times 0 = 54$.

3)
$$\overrightarrow{DB} \cdot \overrightarrow{DC} = DB \times DC \cos \widehat{BDC}$$
, et $\overrightarrow{DB} \cdot \overrightarrow{DC} = 6 \times 6 + (-3) \times (-6) + 6 \times 0 = 54$, $DB = \dots = 9$ et $DC = \dots = 6\sqrt{2}$ $\cos \widehat{BDC} = \dots = \frac{1}{\sqrt{2}}$, donc, $\widehat{BDC} = \frac{\pi}{4}$

$$\frac{DC \times BD \sin \frac{\pi}{4}}{2} = \dots = 27$$

4) a) Aire (BDC)=
$$\frac{DC \times BD \sin \frac{\pi}{4}}{2} = \dots = 27$$

b)
$$V = \frac{1}{3} \operatorname{Aire}(BDC) \times h$$
, d'où, $h = 3$

Exercice B page 378 (Bac Antilles juin 2004)

ABCD est un tétraèdre; I est le milieu de [AB] et J celui de [CD]

1 a) G_1 barycentre du système $\{(A, 1), (B, 1), (C, -1), (D, 1)\}$ est barycentre de $\{(I, 2), (C, -1), (D, 1)\}$ d'après le théorème d'associativité.

On a:
$$2 \ \overrightarrow{G_1 I} - \overrightarrow{G_1 C} + \overrightarrow{G_1 D} = \overrightarrow{0}$$
, et, d'après la relation de Chasles:- $\overrightarrow{G_1 C} + \overrightarrow{G_1 D} = \overrightarrow{CD}$, d'où, $\overrightarrow{IG_1} = \frac{1}{2} \ \overrightarrow{CD}$

b) G_2 barycentre du système $\{(A, 1), (B, 1), (D, 2)\}$ est barycentre de $\{(I, 2), (D, 2)\}$ d'après le théorème d'associativité.

 G_2 est donc le milieu de [ID]

c) Comme *J* est le milieu de [*DC*], on a: $\overrightarrow{JD} = \frac{1}{2} \overrightarrow{CD}$

D'après 1a), , $\overline{IG_1} = \overline{JD}$, le quadrilatère IG_1DJ est donc un parallélogramme.

 G_2 étant le milieu de la diagonale[ID], est celui de [G_1J]

- 2) m est un réel. G_m barycentre du système $\{(A, 1), (B, 1), (C, m-2), (D, m)\}$
- a) G_m existe si et seulement si $1 + 1 + m 2 + m \neq 0$, soit, $m \neq 0$

 $E = \mathbb{IR}^*$

b) $m \neq 0$,

 G_m barycentre du système $\{(A, 1), (B, 1), (C, m-2), (D, m)\}$ est barycentre de $\{(I; 2), (C, m-2), (D, m)\}$ d'après le théorème d'associativité.

On a: 2
$$\overrightarrow{G_m I} + (m-2) \overrightarrow{G_m C} + m \overrightarrow{G_m D} = \overrightarrow{0}$$
,

On en déduit: (2 + m - 2 + m) $\overrightarrow{IG}_m = (m-2)$ $\overrightarrow{IC} + m$ \overrightarrow{ID}

Soit: $2m \ \overline{IG}_m = (m-2) \ \overline{IC} + m \ \overline{ID}$ ce qui prouve que G_m est un point du plan (ICD)

c)
$$G_m$$
 barycentre du système $\{(A, 1), (B, 1), (C, m-2), (D, m)\}$, d'où,

$$(1+1+m-2+m)$$
 $\overrightarrow{JG}_m = \overrightarrow{JA} + \overrightarrow{JB} + (m-2)$ $\overrightarrow{JC} + m$ \overrightarrow{JD}

Or, J milieu de [CD], donc, $m \overrightarrow{JC} + m \overrightarrow{JD} = \vec{0}$

Finalement: $2m \overrightarrow{JG}_m = \overrightarrow{JA} + \overrightarrow{JB} - 2 \overrightarrow{JC} = 2 \overrightarrow{JI} - 2 \overrightarrow{JC} = 2 \overrightarrow{CI}$

ce qui prouve que $m \overline{JG_m}$ est le vecteur constant \overline{CI}

d) D'après c) $\overline{JG_m}$ et \overline{CI} sont colinéaires.

Comme m décrit \mathbb{R}^* , G_m est sur la parallèle Δ à (IC) passant par J

Réciproquement: Tout point M de Δ peut-il être barycentre du système donné au 2.

Soit M un point de Δ .

Il existe un réel k tel que $\overrightarrow{JM} = k \overrightarrow{CI}$

L'égalité m $\overrightarrow{JM} = k$ \overrightarrow{CI} est vraie pour m = k et donc pour $k \neq 0$.

On a alors : $M \neq J$.

 G_m décrit Δ privée de J.