Nom:		Prénom:		
Classe: TSVT2	DS3	(1h30)	Mardi 23 novembre 2010	
			Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie	

La note tiendra compte de toute initiative cohérente.

Petit formulaire:

Résultats du cours sur la fonction exponentielle qui peuvent être utiles:

La fonction $x \mapsto e^x$ a pour dérivée $x \mapsto e^x$

Si u est une fonction dérivable sur I alors la fonction e^u est dérivable sur I et $(e^u)' = u' e^u$

$$\lim_{x \to +\infty} e^{x} = +\infty, \lim_{x \to -\infty} e^{x} = 0, \lim_{x \to +\infty} \frac{e^{x}}{x} = +\infty, \lim_{x \to -\infty} x e^{x} = 0, \lim_{h \to 0} \frac{e^{h} - 1}{h} = 1$$

Exercice 1 (QCM) 8 points

Pour chaque item,

entourez la ou les propositions vraies,

rayez la ou les propositions fausses.

Une réponse correcte de votre part (c'est-à-dire: vous avez entouré une proposition vraie ou rayé une proposition fausse) amène 0,5 point.

Une réponse incorrecte de votre part (c'est-à-dire: vous avez entouré une proposition fausse ou rayé une proposition vraie) enlève 0,25 point.

	La fonction f' , dérivée de la fonction $f: x \mapsto e^{-x^2}$, est la fonction définie par					
Item 1	$f' \colon x \mapsto e^{-x^2}$	$f' \colon x \mapsto -2x e^{-x^2}$	$f' \colon x \mapsto e^{-2x}$	$f'\colon x\mapsto \frac{-2x}{\mathrm{e}^{x^2}}$		
Itom 2	Le nombre complexe $e^{i\frac{\pi}{2}} + e^{i\pi}$ est égal au nombre complexe					
Item 2	$e^{i\frac{3\pi}{2}}$	1 + i	−1 + i	$\sqrt{2} e^{-i\frac{\pi}{4}}$		
	Le nombre complexe -3 e $e^{i\frac{\pi}{6}}$ est le nombre complexe de module					
Item 3	Item 3 -3	3	9	$\frac{\pi}{6}$		
Item 4	Un argument du nombre complexe $-3 e^{i\frac{\pi}{6}}$ est					
	$\frac{\pi}{6}$	$\frac{7\pi}{6}$	$-\frac{\pi}{6}$	$-\frac{5\pi}{6}$		

Exercice 2 3 points

En utilisant l'**écriture exponentielle** d'un complexe, résoudre l'équation dans \mathbb{C} : $z^3 = 4\overline{z}$

Nom:		Prénom:		
Classe: TSVT2	DS3	(1h30)	Mardi 23 novembre 2010	
			Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie	

Exercice 3

Si vous n'arrivez pas à démontrer un résultat mais que vous savez l'utiliser dans la suite de l'exercice, écrivez clairement que vous admettez ce résultat avant de l'utiliser.

Partie I- Étude d'une fonction (certains résultats obtenus à la partie I- dont utiles dans la partie II-)

On considère la fonction f définie sur \mathbb{R} par $f(x) = 2 e^x - 2x + 1$

- 1) a) **Étudier** la limite de f en $-\infty$.
- b) Montrer que la droite d'équation y = -2x + 1 est une asymptote à la courbe représentative de f dans un repère.
- 2) En remarquant que $f(x) = e^x (2 2 \frac{x}{e^x} + \frac{1}{e^x})$, <u>étudier</u> la limite de f en $+\infty$.
- 3) a) Déterminer l'expression de f'(x) où f' est la dérivée de la fonction f.
 - b) **En déduire** la variation de f.
 - c) Expliquer pourquoi cette étude prouve que le nombre f(x) est strictement positif pour tout réel x.

Partie II-

On considère la fonction g définie sur \mathbb{R} par $g(x) = \frac{12 x e^x - 12 e^x - 4 x^3 + 3 x^2}{6}$

1) Étudier la limite de g en $-\infty$.

On admet que la limite de g en $+\infty$ est $+\infty$.

- 2) a) Montrer que g', fonction dérivée de g, est définie sur \mathbb{R} par $g'(x) = x \times f(x)$
 - b) Déterminer les variations de la fonction g.
- 3) a) Montrer que l'équation g(x) = 0 admet deux solutions α et β tells que $\alpha < 0 < \beta$
 - b) À l'aide de la calculatrice, déterminer un encadrement d'amplitude 10^{-2} de la solution β .

DM4 à rendre le mercredi 1 décembre 2010

95 page 99; Exercice C page 102

Activité 4 page 295: à la question 3c/: lire H(N) = P et H(Q) = R (erreur dans certaines éditions où il est écrit: T(Q) = R) Les questions 3b/ et 3c) peuvent être considérées comme des R.O.C.: il s'agit de démontrer des résultats vus en cours.

24 page 307; 31 page 307

Prochain DS: DS4 prévu le mercredi 15 décembre 2010