Table des matières

12 page 34	1
18 page 35	
72 page 39 différents raisonnements.	2
72 page 37 differents faisointements.	_

12 page 34

Énoncé du livre :

1)

	A	В	С	D
1	p	p-1	p+11	(p+11)/(p-1)
2	2	1	13	13
3	3	2	14	7
4	4	3	15	5
5	5	4	16	4
6	6	5	17	3,4
7	7	6	18	3
8	8	7	19	2,714285714
9	9	8	20	2,5
10	10	9	21	2,333333333
11	11	10	22	2,2
12	12	11	23	2,090909091
13	13	12	24	2
14	14	13	25	1,923076923
15	15	14	26	1,857142857
16	16	15	27	1,8
17	17	16	28	1,75
18	18	17	29	1,705882353
10				

Conjecture: Les quotients sont entiers lorsque $p \in \{2; 3; 4; 5; 7; 13\}$

Il apparaît que les quotients vont en décroissant (la fonction : $p \mapsto \frac{p+11}{p-1}$ est décroissante sur]1; $+\infty$ [).

On n'aura jamais un quotient égal à 1, car, $p + 11 \neq p - 1$.

2) démonstration de l'équivalence : "p + 11 = k(p - 1)" \Leftrightarrow "(p - 1)(k - 1) = 12" avec k entier naturel.

On étudie la première égalité :

$$p + 11 = k(p - 1) \Leftrightarrow p + 11 = kp - k \Leftrightarrow 12 - 1 + p = kp - k \Leftrightarrow 12 = kp - k - p + 1$$

On étudie la deuxième égalité :

Or,
$$(p-1)(k-1) = kp - k - p + 1$$
, d'où, $(p-1)(k-1) = 12 \Leftrightarrow 12 = kp - k - p + 1$

L'équivalence est démontrée.

Commentaires : Il s'agit de monter que $(p) \Leftrightarrow (q)$.

En montrant : $(p) \Leftrightarrow (r)$ et $(q) \Leftrightarrow (r)$, on a montré : $(p) \Leftrightarrow (q)$

3) p est un entier supérieur ou égal à 2, donc, p-1 est un entier naturel non nul.

" p-1 divise p+11" équivaut à " il existe un entier k tel que p+11=k(p-1)"

D'après l'équivalence du 2/, on cherche les produits de deux facteurs égaux à 12.

$$p-1=1$$
 et $k-1=12$.
 $p-1=2$ et $k-1=6$.
 $p-1=3$ et $k-1=4$.
 $p-1=4$ et $k-1=3$.
 $p-1=6$ et $k-1=2$.
soit : $p=2$ ($p-1=1$ et $p+11=13$)
soit : $p=3$ ($p-1=2$ et $p+11=14$)
soit : $p=4$ ($p-1=3$ et $p+11=15$)
soit : $p=5$ ($p-1=4$ et $p+11=16$)
soit : $p=7$ ($p-1=6$ et $p+11=18$)

$$p-1=12$$
 et $k-1=1$.

soit :
$$p = 13$$
 $(p - 1 = 12 \text{ et } p + 11 = 24)$

Une autre méthode : (sans suivre l'énoncé)

p est un entier supérieur ou égal à 2, donc, p-1 est un entier naturel non nul.

Si p - 1 divise p + 11 alors,

comme p-1 divise p-1 et p-1 divise p+11, p-1 divise toute combinaison linéaire de p-1 et p+11.

$$p-1$$
 divise $p+11-(p-1)=12$

$$p-1 \in \{1; 2; 3; 4; 6; 12\}$$

$$p \in \{2; 3; 4; 5; 7; 13\}$$

Réciproquement :

Si
$$p = 2$$
 alors $p + 11 = 13$ et $p - 1 = 1$ divise 13.

Si
$$p = 3$$
 alors $p + 11 = 14$ et $p - 1 = 2$ divise 14.

Si
$$p = 4$$
 alors $p + 11 = 15$ et $p - 1 = 3$ divise 15.

Si
$$p = 5$$
 alors $p + 11 = 16$ et $p - 1 = 4$ divise 16.

Si
$$p = 7$$
 alors $p + 11 = 18$ et $p - 1 = 6$ divise 18.

Si
$$p = 13$$
 alors $p + 11 = 24$ et $p - 1 = 12$ divise 24.

18 page 35

Tous les produits de trois facteurs donnant 36 et la somme de ces facteurs :

$$1 \times 1 \times 36 = 36$$
 $1 + 1 + 36 = 38$

$$1 \times 2 \times 18$$
 $1 + 2 + 18 = 21$

$$1 \times 3 \times 12$$
 $1 + 3 + 12 = 16$

$$1 \times 4 \times 9$$
 $1 + 4 + 9 = 14$

$$1 \times 6 \times 6$$
 $1 + 6 + 6 = 13$

$$2 \times 3 \times 6$$
 $2 + 3 + 6 = 11$

$$2 \times 2 \times 9$$
 $2 + 2 + 9 = 13$

$$3 \times 3 \times 4$$
 $3 + 3 + 4 = 10$

Comme la somme est connue (nombre de passagers du bus), les seuls cas où les informations sont insuffisantes sont les cas où cette somme vaut 13.

mais comme, il n'y a qu'un seul aîné, les âges sont : 2 ; 2 et 9

72 page 39 différents raisonnements

Proposition à démontrer : Si a^2 est impair alors a est impair.

1) Contraposée : Si a n'est pas impair alors a^2 n'est pas impair

Soit : Si a est pair alors a^2 est pair.

Rappel: L'implication $(A \Rightarrow B)$ est équivalente à l'implication $(\overline{B} \Rightarrow \overline{A})$

L'implication $(\overline{B} \Rightarrow \overline{A})$ est équivalente à l'implication $(A \Rightarrow B)$.

a = 2k avec $k \in \mathbb{Z}$, d'où, $a^2 = 4k^2 = 2 \times 2k^2$ avec $2k^2$ entier.

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

On a montré : Si a est pair alors a^2 est pair. **Conclusion**: Si a^2 est impair alors a est impair.

2) Par l'absurde:

Classe: TS spé maths

Rappel : On pose en hypothèses, la condition suffisante (donnée) et la négation de la condition nécessaire (conclusion) et, on montre qu'il y a une contradiction.

Comme la donnée est certaine, la contradiction est due à la négation de la conclusion.

Ici:

Condition suffisante: a² impair

Négation de la condition nécessaire: a pair

Démonstration:

Supposons a^2 impair (donnée) et a pair (négation de la conclusion).

la somme $a^2 + a$ est impaire.

Or, $a^2 + a = a(a + 1)$

Parmi les entiers a et a + 1, un des entiers est pair, donc, le produit est pair.

On a donc une contradiction.

Il est impossible d'avoir a pair lorsque a^2 est impair.

Conclusion: Si a^2 est impair alors a est impair.

autre démonstration: k et k' sont des entiers.

 a^2 impair s'écrit sous la forme $a^2 = 2k + 1$

a pair s'écrit sous la forme a = 2k'.

On a alors: $a^2 = 4k'^2$

L'égalité: $2k + 1 = 4k'^2$ mène à $1 = 2(2k'^2 - k)$, soit: 1 est un multiple de 2.

On a donc une contradiction.

Il est impossible d'avoir a pair lorsque a^2 est impair.

Conclusion: Si a^2 est impair alors a est impair.

3) Disjonction des cas :

Donnée : a entier et a^2 impair.

On a deux cas possibles, a est pair ou a est impair.

Si a est pair, le carré a^2 est pair (voir 1))

Si a est impair, on peut écrire $a^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ avec $2k^2 + 2k$ entier.

 a^2 est donc impair.

Le seul cas où a^2 est impair est le cas où a est impair.

Conclusion: Si a^2 est impair alors a est impair.

« Le savoir n'est jamais inutile. Seulement il se trouve qu'il faut apprendre un tas de choses inutiles avant de comprendre les choses utiles »