Index

78 page 96
Partie A. Étude d'une fonction auxiliaire.
Partie B. Étude d'une fonction f.
Partie C; Étude d'une suite de rapports de distances
Exercice E page 317 Nouvelle–Calédonie novembre 2000.

78 page 96

(Correction: Partie C, la suite (un) est définie par $u_n = \frac{C_n B_n}{C_n A_n}$)

Partie A. Étude d'une fonction auxiliaire

La fonction g est définie sur \mathbb{R} par: $g(x) = 2e^x + 2x - 7$

a)
$$\lim_{x \to -\infty} g(x) = -\infty$$
 et $\lim_{x \to +\infty} g(x) = +\infty$ (aucun problème de calculs ...)

b) g est la somme de fonctions dérivables sur \mathbb{R} .

 $g'(x) = 2e^x + 2$ qui est strictement positif pour tout x réel, donc, g est strictement croissante sur \mathbb{R} .

c) g est dérivable sur \mathbb{R} , donc, g est continue sur \mathbb{R} .

g est strictement croissante sur \mathbb{R} .

g réalise ainsi une bijection de \mathbb{R} dans] $\lim_{x \to +\infty} g(x)$; $\lim_{x \to +\infty} g(x)$ [=]- ∞ ; + ∞ [= $g(\mathbb{R})$.

Comme $0 \in g(\mathbb{R})$, il existe un et un seul antécédent à 0 par g.

L'équation g(x) = 0 a une et une seule solution α dans \mathbb{R} .

Comme g(0.94) < 0 < g(0.941), il vient: $0.94 < \alpha < 0.941$

Conséquence:

g s'annule en changeant de signe en α

Si $x < \alpha$ alors g(x) < 0

Si $x > \alpha$ alors g(x) > 0

Partie B. Étude d'une fonction f

La fonction f est définie sur \mathbb{R} par $f(x) = (2x - 5)(1 - e^{-x})$.

On note \mathscr{C} la courbe représentative de f dans un repère orthonormal $(0; \vec{i}, \vec{j})$.

a) f(x) est un **produit** de deux facteurs, d'où, l'étude du signe de chaque facteur résumé dans un tableau de signes.

x		0		5/2		+∞
2x-5	_		_	0	+	
$1 - e^{-x}$	_	0	+		+	
f(x)	+	0	_	0	+	

b) Limite en –∞.

$$\lim_{x \to -\infty} 2x - 5 = -\infty, \lim_{x \to -\infty} e^{-x} = +\infty, \text{ d'où}, \lim_{x \to -\infty} 1 - e^{-x} = -\infty.$$

D'après la limite d'un produit, on a: $\lim_{x \to -\infty} f(x) = +\infty$.

Limite en +∞.

$$\lim_{x \to +\infty} 2x - 5 = +\infty, \quad \lim_{x \to +\infty} e^{-x} = 0, \text{ d'où}, \quad \lim_{x \to +\infty} 1 - e^{-x} = 1$$

D'après la limite d'un produit, on a: $\lim_{x \to +\infty} f(x) = +\infty$.

c) f est le produit de et de

Ne pas oublier que la dérivée de la fonction composée e^u est $(e^u)' = u' e^u$

 $x \mapsto 2x - 5$ a pour dérivée $x \mapsto 2$

$$x \mapsto 1 - e^{-x}$$
 a pour dérivée $x \mapsto -(-1)e^{-x} = e^{-x}$

$$f'(x) = 2(1 - e^{-x}) + (2x - 5) e^{-x} = 2x e^{-x} - 7 e^{-x} + 2$$

Comme
$$e^{-x} = \frac{1}{e^x}$$
, on a: $f'(x) = \frac{2x - 7 + 2e^x}{e^x} = \frac{g(x)}{e^x}$.

Comme $e^x > 0$, le signe de f'(x) est celui de g(x).

D'après le Ad), si $x < \alpha$, g(x) < 0 et si $x > \alpha$, g(x) > 0

x	$-\infty$		α		$+\infty$
f'(x)		_	0	+	
f(x)	+∞		$f(\alpha)$	A	+∞

d)
$$f(\alpha) = (2\alpha - 5)(1 - e^{-\alpha}) = (2\alpha - 5) \left(\frac{e^{\alpha} - 1}{e^{\alpha}}\right)$$

or, α est l'unique réel tel que $2e^{\alpha} + 2\alpha - 7 = 0$

Donc,
$$e^{\alpha} = \frac{7-2\alpha}{2}$$
 et $e^{\alpha} - 1 = \frac{7-2\alpha}{2} - 1 = \frac{5-2\alpha}{2}$,

soit,
$$\left(\frac{e^{\alpha}-1}{e^{\alpha}}\right) = \left(\frac{5-2\alpha}{2}\right)\left(\frac{2}{7-2\alpha}\right) = \frac{5-2\alpha}{7-2\alpha} = \frac{2\alpha-5}{2\alpha-7}$$

d'où,
$$f(\alpha) = (2\alpha - 5)(\frac{2\alpha - 5}{2\alpha - 7}) = \frac{(2\alpha - 5)^2}{2\alpha - 7}$$

2) Soit *h* définie sur
$$D_h =]-\infty; \frac{5}{2} [par h (x) = \frac{(2x-5)^2}{2x-7}]$$

Remarquer: $\alpha \in D_h$ et $h(\alpha) = f(\alpha)$

$$h'(x) = \frac{2 \times 2(2x-5)(2x-7)-2(2x-5)^2}{(2x-7)^2} = \frac{(2x-5)[4(2x-7)-2(2x-5)]}{(2x-7)^2} = \frac{(2x-5)(4x-18)}{(2x-7)^2}$$

$$= \frac{2(2x-5)(2x-9)}{(2x-7)^2}$$

Sur D_h , on sait: 2x - 5 < 0 et 2x - 9 < 0, d'où, h'(x) > 0 et h est une fonction strictement croissante sur D_h .

Encadrement de $f(\alpha)$ (ou $h(\alpha)$)

Comme $f(\alpha)$ est le minimum de f, on a: $f(\alpha) < f(0.94)$ et $f(\alpha) < f(0.941)$

Comme h strictement croissante, on a: $h(0.94) < h(\alpha) < h(0.941)$

X	Y1	Y2	T.
99999999999999999999999999999999999999	-1.901 -1.901 -1.901 -1.901 -1.901 -1.901 -1.901	-1,901 -1,898 -1,896 -1,894 -1,893 -1,891	
$\forall z = -1$.	. 8995	55295	ě
	Sill Control	P 15 / 10	

Méthode pour encadrer $f(\alpha)$.

On choisit la valeur par défaut de la borne inférieure h(0,94) avec deux décimales (puisqu'on demande un encadrement d'amplitude 10^{-2})

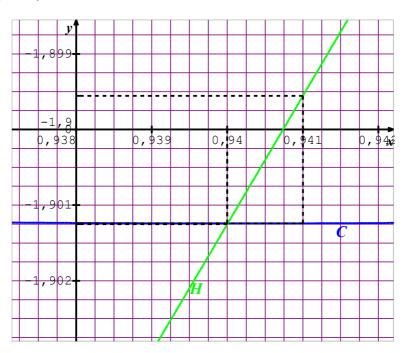
et on prend la valeur par excès du minimum des majorants de $f(\alpha)$ (les majorants sont: f(0,94), f(0,941), h(0,941))

On a donc: $-1.91 < f(\alpha)$

La calculatrice donne, f(0.94) < -1.90 et f(0.941) < -1.90 et h(0.94) < -1.89.

Conclusion: $-1.91 < f(\alpha) < -1.90$

Un zoom



ou encore:

voici les **positions relatives** des nombres sur l'axe des réels (les écarts réels ne sont pas conservés)

Valeurs approchées avec 7 décimales: $f(0.94) \approx -1.9012412$

$$f(0,941) \approx -1,9012398$$

$$h(0,94) \approx -1,9012500$$

$$h(0,941) \approx -1,8995553$$

$$-1,91 h(0,94) h(\alpha) = f(\alpha) f(0,94) f(0,941) -1,90 h(0,941) -1,89$$

e) On pose $d(x) = f(x) - (2x - 5) = (2x - 5)(1 - e^{-x}) - (2x - 5) = -(2x - 5) e^{-x}$ Comme $\lim_{x \to +\infty} e^{-x} = 0$, la droite D d'équation y = 2x - 5 est asymptote à \mathcal{C} .

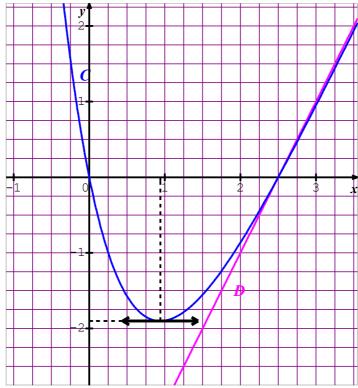
Comme pour tout x réel, $e^{-x} > 0$, d(x) est du signe opposé à 2x - 5, d'où,

la droite D d'équation y = 2x - 5 est strictement au-dessous de $\mathscr C$ lorsque $x < \frac{5}{2}$

la droite D d'équation y = 2x - 5 est strictement au-dessus de \mathscr{C} lorsque $x > \frac{5}{2}$

la droite *D* d'équation y = 2x - 5 coupe \mathscr{C} au point de coordonnées $\left(\frac{5}{2}; 0\right)$

f) Graphique (unité 2cm)



Partie C; Étude d'une suite de rapports de distances.

Pour tout entier *n* supérieur ou égal à 3, on a:

 A_n d'abscisse n sur l'axe des abscisses, donc, $A_n(n; 0)$

 B_n d'abscisse n sur la droite D, donc, $B_n(n; 2n-5)$

 C_n d'abscisse n sur la courbe \mathscr{C} , donc, $C_n(n, f(n)) = (n; (2n-5)(1-e^{-n}))$

$$u_n = \frac{C_n B_n}{A_n B_n}$$

a) D'après l'étude précédente, $C_nB_n=2n-5-f(n)$ car, D au-dessus de $\mathscr C$ lorsque $n\geq 3$. et $A_nB_n=2n-5-0=2n-5$

On a donc:
$$u_n = \frac{2n-5-f(n)}{2n-5} = \frac{(2n-5)(1-(1-e^{-n}))}{2n-5} = e^{-n} = (e^{-1})^n = \left(\frac{1}{e}\right)^n$$

La suite (u_n) est donc une suite géométrique de premier terme $u_3 = e^{-3}$ et de raison $\frac{1}{e}$.

b) Puisque $-1 < \frac{1}{e} < 1$, la suite (u_n) converge vers 0.

Le résultat était prévisible puisque C_nB_n est l'écart entre l'asymptote et la courbe et que A_nB_n tend vers l'infini puisque la droite D représente une fonction affine croissante.

Exercice E page 317 .Nouvelle-Calédonie novembre 2000

1.a. Résoudre dans \mathbb{C} l'équation $z^2 - 2z + 2 = 0$.

discriminant
$$\Delta = b^2 - 4ac = -4 = 4i^2 = (2 i)^2$$

Les solutions dans \mathbb{C} sont donc les complexes conjugués: $z_1 = 1 - i$ et $z_2 = \overline{z_1} = 1 + i$ Préciser le module et un argument de chacune des solutions.

$$|1-i| = |1+i| = \sqrt{2}$$
 et **un** argument θ_1 de z_1 est $-\frac{\pi}{4}$ et θ_2 de z_2 est $\theta_2 = -\theta_1 = \frac{\pi}{4}$.

Écriture exponentielle des solutions: $z_1 = \sqrt{2}$ $e^{-i\pi/4}$ et $z_2 = \sqrt{2}$ $e^{i\pi/4}$

b. En déduire les solutions dans C de l'équation

$$(-iz + 3i + 3)^2 - 2(-iz + 3i + 3) + 2 = 0.$$

D'après le a), les solutions de cette équation sont les solutions des deux équations suivantes:

$$-iz + 3i + 3 = 1 - i$$
 et $-iz + 3i + 3 = 1 + i$

$$-iz + 3i + 3 = 1 - i \Leftrightarrow -iz = -2 - 4i \Leftrightarrow z = -2i + 4$$
 (remarguer: $-iz \times i = z$)

$$-iz + 3i + 3 = 1 + i \Leftrightarrow -iz = -2 - 2i \Leftrightarrow z = -2i + 2$$

Les solutions de $(-iz + 3i + 3)^2 - 2(-iz + 3i + 3) + 2 = 0$ sont $\{4 - 2i; 2 - 2i\}$

- 2. Le plan est rapporté à un repère orthonormal direct $(O; \vec{u}, \vec{v})$ d'unité graphique 2 cm. On considère les points A, B et C d'affixes respectives $z_A = 1 + i$, $z_B = \overline{z_A}$, $z_C = 2z_B$.
- a. Déterminer les formes algébriques de $z_{\rm B}$ et $z_{\rm C}$.

$$z_A = 1 + i$$
, $z_B = \overline{z_A} = 1 - i$, $z_C = 2z_B = 2 - 2i$.

- b. Placer les points A, B et C
- c. Montrer que les points A, B et C appartiennent au cercle ($\mathscr C$) de centre I d'affixe S et de rayon \sqrt{S} .

$$IA = |z_A - z_I| = |1 + i - 3| = |-2 + i| = \sqrt{(-2)^2 + 1^2} = \sqrt{5}$$

$$IB = \dots = |-2 - i| = \sqrt{5}$$

$$IC = \dots = |-1-2i| = \sqrt{5}$$

d. Calculer
$$\frac{z_C - 3}{z_A - 3}$$
.

$$\frac{z_C - 3}{z_A - 3} = \frac{-1 - 2i}{-2 + i} = \frac{i(i - 2)}{-2 + i} = i$$

en déduire la nature du triangle IAC.

Le résultat précédent montre que: $z_C - z_I = i(z_A - z_I)$, d'où,

C est l'image de A dans la rotation de centre I et d'angle $\frac{\pi}{2}$ (quart de tour de centre I direct)

IAC est un triangle rectangle isocèle direct en I.

e. Le point E est l'image du point O par la translation de vecteur 2 \overrightarrow{IC} . Déterminer l'affixe du point E.

L'affixe de 2
$$\overrightarrow{IC}$$
 est $2(-1-2i) = -2-4i$

On a donc
$$z_E = 0 + (-2 - 4i) = -2 - 4i$$

f. Le point D est l'image du point E par la rotation de centre O et d'angle $\frac{\pi}{2}$. Déterminer l'affixe du point D.

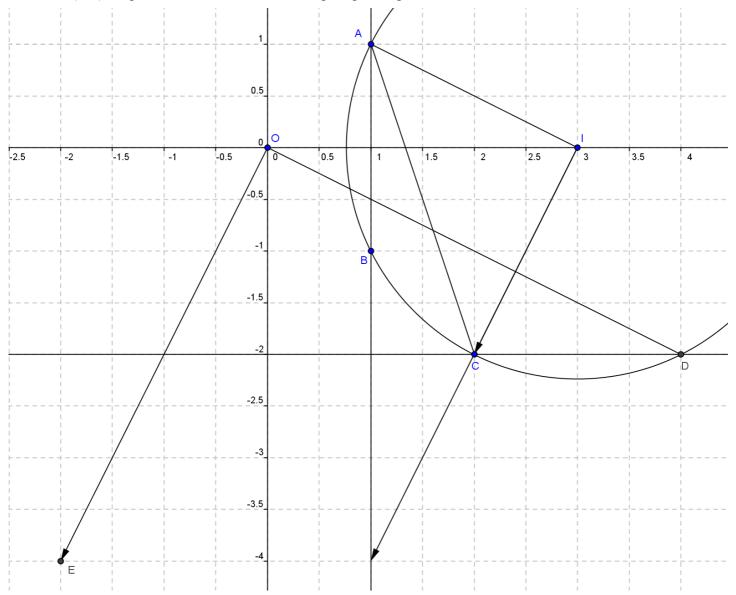
D'après l'écriture complexe d'une rotation, on a: $z_D - z_O = e^{i\pi/2} (z_E - z_O)$

$$z_D = i z_E = 4 - 2i$$

g. Démontrer que les droites (AB) et (CD) sont perpendiculaires.

La droite (AB) est parallèle à l'axe des ordonnées puisque les points A et B ont la même abscisse (leurs affixes sont des complexes conjugués)

La droite (CD) est parallèle à l'axe des abscisses puisque les points C et D ont la même ordonnée -2.

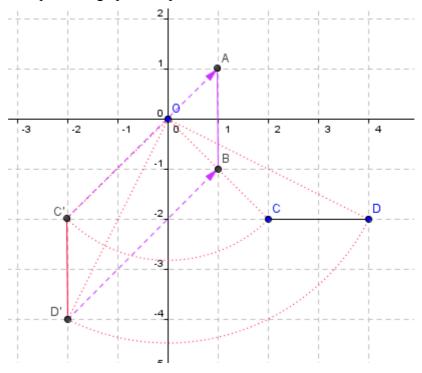


Quelques remarques à propos des 1a) et 1b)

On considère la transformation $T: z \mapsto -iz + 3i + 3$ qui peut se décomposer en une rotation r de centre O et d'angle $-\frac{\pi}{2}$ suivie d'une translation t de vecteur \vec{w} d'affixe 3+3i.

En effet : $z \stackrel{r}{\rightarrow} -iz \stackrel{t}{\rightarrow} -iz + 3 + 3i$

D'après les calculs du 1b), le point C d'affixe 2-2i a pour image par T le point A d'affixe 1+i . et le point D d'affixe 4-2i a pour image par T le point B d'affixe 1-i.



Le segment [CD] a pour image un segment [C'D'] par r tel que CD = C'D' et $(CD) \perp (C'D')$ et le segment [C'D'] a pour image le segment [AB] tel que AB = C'D' et $(AB) \parallel (C'D')$

Autre remarque:

En montrant au 2d) que $\frac{z_C - 3}{z_A - 3} = i$, on montre que C est l'image de A par la rotation de centre I d'affixe 3 et d'angle $\frac{\pi}{2}$.

On montre de même façon que
$$\frac{z_D - 3}{z_B - 3} = i$$
 $(z_D - 3 = 4 - 2i - 3 = 1 - 2i \text{ et } z_B - 3 = 1 - i - 3 = -2 - i$ et $i(-2 - i) = 1 - 2i$)

Le segment [CD] est donc l'image du segment [AB] par la rotation de centre I d'affixe 3 et d'angle $\frac{\pi}{2}$., d'où, AB = CD et $(AB) \perp (CD)$