Index

<u>I- Distance entre deux réels.</u>	<u>1</u>
I-1- Droite graduée	1
I-2- Définition.	2
Exemple:	2
II- Valeur absolue d'un réel.	2
II-1- Définition.	2
Exemple: (voir I-2).	2
II-2- Conséquences	2
<u>II-2-1</u>	2
<u>II-2-2</u>	3
<u>II-2-3</u>	3
<u>II-2-4</u>	3
III- Applications.	<u>3</u>
III-1- Résolutions d'équations de la forme $ x - a = r$.	<u>3</u>
<u>III-1-1, </u>	<u>3</u>
<u>III-1-2</u>	<u>3</u>
<u>III-1-3</u>	<u>4</u>
<u>III-1-4</u>	<u>4</u>
Synthèse.	<u>4</u>
III-2- Résolutions d'équations de la forme $ x - a = x - b $.	<u>4</u>
Synthèse.	<u>4</u>
III-3- Résolutions d'inéquations de la forme $ x-a \le r$ ou $ x-a \ge r$	<u>5</u>
<u>III-3-1</u>	<u>5</u>
<u>III-3-1-1</u>	<u>5</u>
<u>III-3-1-2</u>	<u>5</u>
<u>III-3-2.</u>	<u>5</u>
<u>III-3-2-1</u>	<u>5</u>
<u>III-3-2-2.</u>	5
<u>III-3-3</u>	<u>6</u>
<u>III-3-3-1</u>	<u>6</u>
<u>III-3-3-2</u>	<u>6</u>
<u>III-3-4</u>	<u>6</u>
<u>III-3-4-1</u>	<u>6</u>
III-3-4-2	<u>6</u>
III-4- Encadrements- Intervalles	
IV- Synthèse pour la résolution des équations et inéquations.	<u>7</u>

I- Distance entre deux réels

I-1- Droite graduée

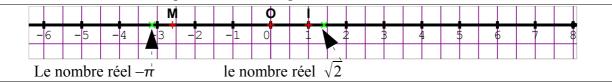
Une droite graduée est une droite orientée sur laquelle on a choisi un point origine O et un point I marquant l'unité.

(O; I) est un repère de la droite.

L'ensemble des réels est représenté par une droite graduée.

A tout point M de la droite graduée est associé un et un seul réel x appelé abscisse de M.

À tout réel est associé un et un seul point de la droite graduée.



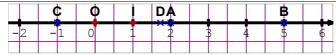
I-2- Définition

Soit deux points A et B sur une droite graduée d'abscisses respectives a et b. (a et b sont des nombres réels) La distance entre les nombres a et b, notée d(a; b), est égale à la distance AB. (L'unité est donnée par la longueur OI du repère).

$$d(a;b) = AB$$
.

Pour calculer la distance de A à B, on retranche l'abscisse la plus petite à l'abscisse la plus grande.

Exemple:



A d'abscisse 2, B d'abscisse 5, C d'abscisse -1 et D d'abscisse $\sqrt{3}$

$$AB = BA = 3$$
, $AD = DA = 2 - \sqrt{3}$, $OC = CO = 1$, $OD = DO = \sqrt{3}$, ...

A d'abscisse 2 et B d'abscisse 5, on a: d(2; 5) = 3 et aussi d(5; 2) = 3

A d'abscisse 2 et C d'abscisse -1, on a: d(2; -1) = 3 et aussi d(-1; 2) = 3

D d'abscisse $\sqrt{3}$ et B d'abscisse 5, on a: $d(\sqrt{3}; 5) = 5 - \sqrt{3}$ et aussi $d(5; \sqrt{3}) = 5 - \sqrt{3}$

O d'abscisse 0 et C d'abscisse -1, on a: d(0; -1) = 1 et aussi d(-1; 0) = 1

II- Valeur absolue d'un réel

II-1- Définition

Soit a et b deux réels, la valeur absolue du réel b-a, notée |b-a| est la distance de a à b: d(a;b)

Exemple: (voir I-2)

$$|5-2| = 3$$
 et $|2-5| = 3$

$$|-1-2| = 3$$
 et $|2-(-1)| = 3$

$$|5 - \sqrt{3}| = 5 - \sqrt{3}$$
 et $|\sqrt{3} - 5| = 5 - \sqrt{3}$

$$|-1-0| = |-1| = 1$$
 et $|0-(-1)| = |1| = 1$

II-2- Conséquences

II-2-1

La valeur absolue est un réel positif ou nul (C'est une distance)

II-2-2

$$|b-a| = |a-b|$$
 (En effet, $AB = BA$)

II-2-3

$$|-a| = |a|$$

Il suffit de faire b = 0 dans l'égalité précédente.

Ou encore, lorsqu'on a un réel a, |a| est la distance de a à 0.

Par symétrie a et -a sont à la même distance de 0.

II-2-4

Rappel: Pour calculer la distance de A à B, on retranche l'abscisse la plus petite à l'abscisse la plus grande.

On a alors:
$$|a-b| = \begin{cases} a-b & \text{si } a \ge b \\ b-a & \text{si } a \le b \end{cases}$$

et
$$|a| = \begin{cases} a & \text{si } a \ge 0 \\ -a & \text{si } a \le 0 \end{cases}$$

Voir les exemples précédents

III- Applications

Pour ce qui concerne le programme de seconde, il suffit de retenir la méthode.

Méthode: Traduire la valeur absolue en termes de distance

Représenter graphiquement

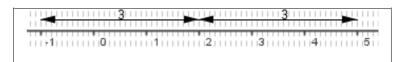
Conclure suivant la question

III-1- Résolutions d'équations de la forme |x - a| = r

III-1-1

Résoudre l'équation d'inconnue x: |x-2| = 3

On cherche les nombres à la distance 3 de 2.



On lit alors: -1 et 5.

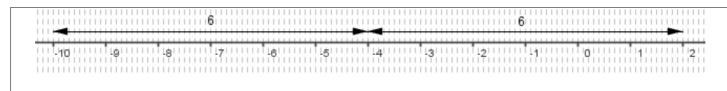
L'ensemble des solutions de |x-2| = 3 est: $S = \{-1, 5\}$

III-1-2

Résoudre l'équation d'inconnue x: |x + 4| = 6

Comme |x + 4| = 6 équivaut à |x - (-4)| = 6, on cherche les nombres à la distance 6 de -4.

On lit alors: -10 et 2.



Les méthodes sont les habitudes de l'esprit et les économies de la mémoire. Rivarol

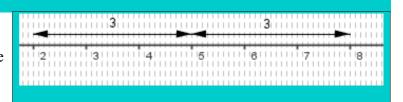
D:\docs_lycee_08_09\seconde\cours\valeur_absolue.odt

L'ensemble des solutions de |x + 4| = 6 est: $S = \{-10, 2\}$

III-1-3

Résoudre l'équation d'inconnue x: |5 - x| = 3

Comme |5 - x| = 3 équivaut à |x - 5| = 3, on cherche les nombres à la distance 3 de 5.



On lit alors: 2 et 8.

L'ensemble des solutions de |5-x|=3 est: $S=\{2;8\}$

III-1-4

Résoudre l'équation d'inconnue x: |x-4| = -1

Comme une valeur absolue est positive ou nulle, il n'y a aucune solution.

L'ensemble des solutions de |x-4|=-1 est l'ensemble vide. $S=\emptyset$.

Synthèse

Pour résoudre les équations de la forme |x - a| = r,

attention: Si on a: |x + b|, mettre sous la forme |x - (-b)|

si r < 0, aucune solution.

si r = 0, une seule solution x = a

si r > 0, deux solutions. On place a sur la droite graduée et on se place de part et d'autre de a à la distance r;

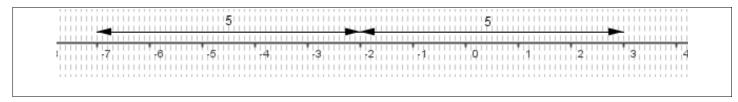
On lit les deux solutions a - r et a + r.

III-2- Résolutions d'équations de la forme |x - a| = |x - b|

Résoudre l'équation d'inconnue x, |x-3| = |x+7|

$$|x-3| = |x+7|$$
 équivaut à $|x-3| = |x-(-7)|$

On cherche tous les nombres à égale distance de 3 et -7.



Il n'y a qu'un seul nombre qui est le centre (milieu) de l'intervalle [-7; 3].

$$x = \frac{-7+3}{2} = -2$$

|x-3| = |x+7| a pour unique solution le réel -2.

Synthèse

Pour résoudre les équations de la forme |x - a| = |x - b|,

on cherche le nombre à égale distance de a et b, c'est-à-dire le c centre de l'intervalle [a; b].

$$c = \frac{a+b}{2}$$

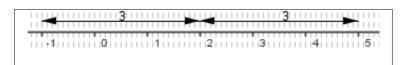
III-3- Résolutions d'inéquations de la forme $|x-a| \le r$ ou $|x-a| \ge r$

III-3-1

III-3-1-1

Résoudre l'inéquation d'inconnue x: $|x-2| \le 3$

On cherche les nombres à une distance de 2 inférieure ou égale à 3.



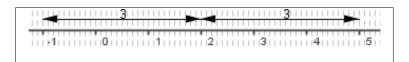
On lit alors: $-1 \le x \le 5$.

L'ensemble des solutions de $|x-2| \le 3$ est: S = [-1, 5]

III-3-1-2

Résoudre l'inéquation d'inconnue x: $|x-2| \ge 3$

On cherche les nombres à une distance de 2 supérieure ou égale à 3.



On lit alors: $x \le -1$ ou $x \ge 5$.

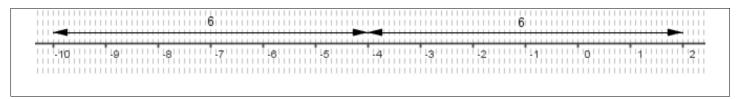
L'ensemble des solutions de $|x-2| \ge 3$ est: $S =]-\infty; -1] \cup [5; +\infty[$.

III-3-2

III-3-2-1

Résoudre l'inéquation d'inconnue x: $|x + 4| \le 6$

Comme $|x + 4| \le 6$ équivaut à $|x - (-4)| \le 6$, on cherche les nombres à une distance de -4 inférieure ou égale à 6.



On lit alors: $-10 \le x \le 2$.

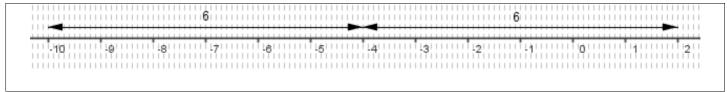
L'ensemble des solutions de $|x + 4| \le 6$ est: S = [-10, 2]

III-3-2-2

Résoudre l'inéquation d'inconnue x: $|x + 4| \ge 6$

On cherche les nombres à une distance de -4 supérieure ou égale à 6.

On lit alors: $x \le -10$ ou $x \ge 2$.



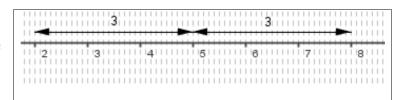
L'ensemble des solutions de $|x + 4| \le 6$ est: $S =]-\infty; -10] \cup [2; +\infty[$

III-3-3

III-3-3-1

Résoudre l'inéquation d'inconnue x: $|5 - x| \le 3$

Comme $|5-x| \le 3$ équivaut à $|x-5| \le 3$, on cherche les nombres à une distance de 5 inférieure ou égale à 3.



On lit alors: $2 \le x \le 8$.

L'ensemble des solutions de $|5-x| \le 3$ est: S = [2; 8]

III-3-3-2

Résoudre l'inéquation d'inconnue x: $|5-x| \ge 3$

On cherche les nombres à une distance de 5 supérieure ou égale à 3.

On lit alors: $x \le 20u x \ge 8$.

L'ensemble des solutions de $|5-x| \ge 3$ est: $S =]-\infty; 2] \cup [8; +\infty[$

III-3-4

III-3-4-1

Résoudre l'inéquation d'inconnue x: $|x-4| \le -1$

Comme une valeur absolue est positive ou nulle, il n'y a aucune solution.

L'ensemble des solutions de $|x-4| \le -1$ est l'ensemble vide. $S = \emptyset$.

III-3-4-2

Résoudre l'inéquation d'inconnue x: $|x-4| \ge -1$

Comme une valeur absolue est positive ou nulle, l'inégalité est toujours vraie

L'ensemble des solutions de $|x-4| \ge -1$ est l'ensemble des réels. $S = \mathbb{R}$.

III-4- Encadrements- Intervalles

Les inéquations précédentes montrent que l'ensemble des solutions des inéquations de la forme $|x-a| \le r$ avec r > 0 est un intervalle.

Soit a et b deux réels tels que a < b.

On appelle c le **centre** ou milieu de [a; b].

On a alors:
$$c = \frac{a+b}{2}$$

Le réel b - a est l'**amplitude ou longueur** de l'intervalle.

On pose
$$r = \frac{b-a}{2}$$
 (rayon)

On a les équivalences suivantes:

Intervalle	Encadrement	Inéquation	Représentation graphique
$x \in [a; b]$	$a \le x \le b$	$ x - c \le r$	A r C r B b-a

IV- Synthèse pour la résolution des équations et inéquations.

On traduit expression par une distance.

Ne pas oublier qu'on doit mettre sous la forme d'une différence x - y (où y peut être nul).

On place sur une droite graduée les éléments

On traduit les symboles =, <, >, \le , \ge par la position des points dur l'axe.

On écrit les solutions lues sur l'axe à l'aides des symboles d'ensemble {...; ...; ... } ou d'intervalles [...; ...] etc.

r est un réel strictement positif

$$|x-a| = r$$
 a pour ensemble de solutions $S = \{a-r, a+r\}$

$$|x-a| \le r$$
 a pour ensemble de solutions $S = [a-r; a+r]$

$$|x-a| \ge r$$
 a pour ensemble de solutions $S =]-\infty; a-r] \cup [a+r; +\infty[.$