Index

88 page 99	1
125 page 101	2
4 page 244	3
TD3 page 109	4

88 page 99

f est une fonction définie sur IR par $f(x) = 2x^2 - 2x - 4$ (forme développée) = 2(x-2)(x+1) (forme factorisée) = $-\frac{9}{2} + 2\left(x - \frac{1}{2}\right)^2$ (forme canonique)

Remarque: en développant: $2(x-2)(x+1) = 2(x^2-x-2) = 2x^2-2x-4$ $-\frac{9}{2} + 2\left(x-\frac{1}{2}\right)^2 = -\frac{9}{2} + 2\left(x^2-x+\frac{1}{4}\right) = 2x^2-2x-4$

1) Image de (-3):

Forme développée ou forme factorisée : $f(-3) = 2 \times (-3)^2 - 2 \times (-3) - 4 = 2 \times 9 + 6 - 4 = 20$ ou $f(-3) = 2 \times (-3 - 2) \times (-3 + 1) = 2 \times (-5) \times (-2) = 20$

Image de 2 :

Forme factorisée : $f(2) = 2 \times (2-2) \times (2+1) = 0$ (un facteur nul)

Image de $\frac{1}{2}$:

Forme canonique : $f\left(\frac{1}{2}\right) = -\frac{9}{2} \operatorname{car}\left(\frac{1}{2} - \frac{1}{2}\right) = 0$

3) Image de $\sqrt{3}$:

Forme développée $f(\sqrt{3}) = 2 \times (\sqrt{3})^2 - 2 \times (\sqrt{3}) - 4 = 2 \times 3 - 2\sqrt{3} - 4 = 2 - 2\sqrt{3}$.

Image de $1 - \sqrt{5}$

Forme factorisée

$$f(1-\sqrt{5}) = 2(1-\sqrt{5}-2)(1-\sqrt{5}+1) = 2(-1-\sqrt{5})(2-\sqrt{5}) = 2(-2+\sqrt{5}-2\sqrt{5}+5)$$
$$= 2(3-\sqrt{5}) = 6-2\sqrt{5}$$

ou forme développée :

$$f(1-\sqrt{5}) = 2(1-\sqrt{5})^2 - 2(1-\sqrt{5}) - 4 = 2(1-2\sqrt{5}+5) - 2 + 2\sqrt{5} - 4 = 12 - 4\sqrt{5} - 6 + 2\sqrt{5} = 6 - 2\sqrt{5}$$

3) Résoudre f(x) = 0

Forme factorisée (car, un produit est nul)

Les solutions : 2 et -1

4) Résoudre f(x) = -4

Forme développée (car, le coefficient c = -4)

 $2x^2 - 2x - 4 = -4$ si et seulement si $2x^2 - 2x = 0$ si et seulement si 2x(x - 1) = 0

Les solutions : 0 et 1

5) Résoudre
$$f(x) = -\frac{1}{2}$$

Forme canonique:

$$-\frac{9}{2} + 2\left(x - \frac{1}{2}\right)^2 = -\frac{1}{2} \text{ si et seulement si } 2\left(x - \frac{1}{2}\right)^2 = \frac{9}{2} - \frac{1}{2}$$
$$2\left(x - \frac{1}{2}\right)^2 = 4 \text{ si et seulement si } \left(x - \frac{1}{2}\right)^2 = 2$$

On a alors :
$$x - \frac{1}{2} = -\sqrt{2}$$
 ou $x - \frac{1}{2} = \sqrt{2}$;

Deux solutions : $\frac{1}{2} - \sqrt{2}$ et $\frac{1}{2} + \sqrt{2}$.

6) Variations de f,

comme le coefficient de x^2 est 2 strictement positif et que la forme canonique nous donne le minimum $\frac{-9}{2}$ atteint en $\frac{1}{2}$, on a :

DM8

f est strictement décroissante sur $\left]-\infty;\frac{1}{2}\right]$ et f est strictement croissante sur $\left[\frac{1}{2};+\infty\right[$.

Bilan

f est une fonction polynôme du second degré, $f(x)$ peut s'écrire :									
Expression algébrique	$f(x) = ax^2 + bx + c$	$f(x) = a(x - \alpha)^2 + \beta$	$f(x) = a(x - x_1)(x - x_2)$ (parfois impossible)						
Dans l'exercice 88	$f(x) = 2x^2 - 2x - 4$	$f(x) = -\frac{9}{2} + 2\left(x - \frac{1}{2}\right)^2$	f(x) = 2(x-2)(x+1)						
Informations immédiates pour la représentation graphique	Signe de a et $C(0, c)$	Signe de a et $S(\alpha, \beta)$	Signe de a et $A(x_1; 0), B(x_2; 0)$						
pour l'étude de fonction		Variations							

^{***} On montre les égalités grâce à la maîtrise du calcul algébrique

- pour l'intersection avec l'axe des ordonnées en calculant f(0) (c'est le coefficient c de la forme développée)
- pour l'intersection avec l'axe des abscisses en résolvant l'équation f(x) = 0 (forme factorisée pour obtenir une équation produit)
 - pour le sommet de la parabole et/ou l'extremum de la fonction, on choisit la forme canonique.

Dans tous les cas, on relève le coefficient de x^2 .

Dans tous les cas, on crée des liens entre les différentes formes.

On n'oublie pas que la parabole possède un axe de symétrie.

^{***} On choisit la forme la plus adaptée

Classe: 2°4 DM8

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

125 page 101

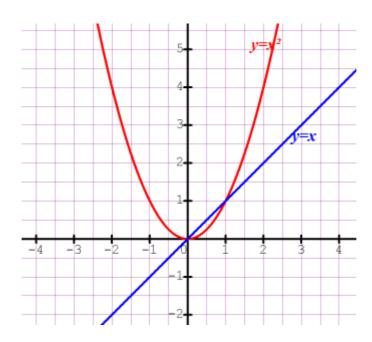
1) f(x) = g(x) si et seulement si $x^2 = x$ si et seulement si $x^2 - x = 0$ si et seulement si x(x - 1) = 0

Deux solutions: 0 et 1

 $(2) f(x) \ge g(x)$ si et seulement si C_f est au-dessus de C_g .

On lit: $S =]-\infty;0] \cup [1;+\infty[$.

Graphique:



4 page 244

Lors d'un championnat, un sportif de haut niveau a réalisé en saut en longueur les performances suivantes (en mètres) :

8,30 - 8,23 - 7,78 - 8,16 - 7,93 - 8,31 - 8,24 - 8,30 -8,35 - 8,30 - 7,90 - 8,18 - 8,12 - 7,97 - 8,24 - 8,18.

Série dépouillée et classée dans l'ordre des valeurs croissantes

Longueur	7,78	7,90	7,93	7,97	8,12	8,16	8,18	8,23	8,24	8,30	8,31	8,35
effectif	1	1	1	1	1	1	2	1	2	3	1	1
effectif	1	2	3	4	5	6	8	9	11	14	15	16

« Le savoir n'est jamais inutile. Seulement il se trouve qu'il faut apprendre un tas de choses inutiles avant de comprendre les choses utiles »

Classe: 2°4 DM8

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

Longueur	7,78	7,90	7,93	7,97	8,12	8,16	8,18	8,23	8,24	8,30	8,31	8,35
cumulé												
croissant												

1- Moyenne de la série : $\frac{7,78+7,90+7,93+7,97+8,12+8,18\times2+8,23+8,24\times2+8,30\times3+8,31+8,35}{16}$

$$\frac{130,49}{16} = 8,155 625 \text{ m}$$

2- L'effectif total vaut 16

16 étant un nombre pair, la valeur médiane est la moyenne des 8ème et 9ème valeurs.

Médiane de la série : Me = $\frac{8,18+8,23}{2}$ = 8,205 m

3- Le premier quartile est la plus petite valeur Q_1 telle qu'au moins 25 % (un quart) de l'effectif prend une valeur inférieure ou égale à Q_1

Pour déterminer Q_1 : on divise l'effectif par 4, $\frac{16}{4} = 4$. Q_1 est la 4ème valeur de la série.

Premier quartile : $Q_1 = 7,97 \text{ m}$

Le troisième quartile est la plus petite valeur Q_3 telle qu'au moins 75 % (trois quarts) de l'effectif prend une valeur inférieure ou égale à Q_3

Pour déterminer Q_3 : on divise l'effectif par 4 et on multiplie par 3, $\frac{3\times16}{4}$ = 12. Q_3 est la 12ème valeur de la série.

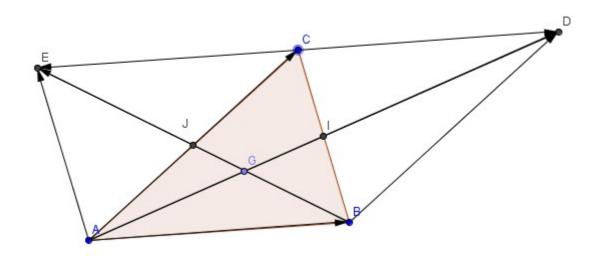
Troisième quartile : $Q_3 = 8,30 \text{ m}$

Complément: Si $\frac{N}{4}$ n'est pas un entier, on prend le premier entier supérieur à $\frac{N}{4}$

Par exemple, si l'effectif est N = 17, Q_1 est la 7ème valeur de la série.

TD3 page 209

A) Figure



DM8

B) Démonstration

Données : ABC triangle, I milieu de [BC] et J celui de [AC].

1 a) D est défini par $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$

b) ABDC est par conséquent un parallélogramme, de centre I, milieu de la diagonale [BC].

I est alors le milieu de l'autre diagonale [AD].

On en déduit : $\overrightarrow{AD} = 2\overrightarrow{AI}$

Conclusion: $\overrightarrow{AB} + \overrightarrow{AC} = 2 \overrightarrow{AI}$

2) G est le point défini par : $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$

a)
$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{GA} + (\overrightarrow{GA} + \overrightarrow{AB}) + (\overrightarrow{GA} + \overrightarrow{AC}) = 3\overrightarrow{GA} + \overrightarrow{AB} + \overrightarrow{AC}$$

Comme $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$, on obtient: $3\overrightarrow{GA} + \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{0}$

b)
$$3\overrightarrow{GA} + \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{0}$$
 équivaut à $3\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{AC}$ équivaut à $\overrightarrow{AG} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC})$

c) Comme
$$\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AI}$$
, il vient : $\overrightarrow{AG} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC}) = \frac{2}{3}\overrightarrow{AI}$

3- On construit le parallélogramme BAEC en construisant le point E défini par $\overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{BC}$.

Le milieu J de la diagonale [AC] est celui de [BE], donc, $\overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{BC} = 2\overrightarrow{BJ}$.

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = (\overrightarrow{GB} + \overrightarrow{BA}) + \overrightarrow{GB} + (\overrightarrow{GB} + \overrightarrow{BC}) = 3\overrightarrow{GB} + \overrightarrow{BA} + \overrightarrow{BC}$$

Comme
$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$$
, on obtient: $3\overrightarrow{GB} + \overrightarrow{BA} + \overrightarrow{BC} = \overrightarrow{0}$, soit: $\overrightarrow{BG} = \frac{1}{3}(\overrightarrow{BA} + \overrightarrow{BC}) = \frac{2}{3}\overrightarrow{BJ}$.

4) De l'égalité du 2c/, on en déduit : les points G, A, I sont alignés.

De l'égalité du 3/, on en déduit : les points G, B, J sont alignés.

Classe: 2°4 DM8

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

Le point G est un point de la médiane (AI) et un point de la médiane (BJ).

G est donc le centre de gravité du triangle ABC.

On a aussi montré que G est situé aux $\frac{2}{3}$ de la médiane à partir du sommet.