Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

NOM: Préno

Exercice 1 applications du cours "Intervalles "

3 points

Compléter le tableau suivant : (vous pouvez répondre sur cette feuille)

la première ligne sert de modèle pour comprendre ce qui est attendu :

Encadreme nts ou inégalités	Intervalles	Représentation sur un axe gradué	Centre et rayon de l'intervalle s'ils existent
$2 \le x < 5$	$x \in [2; 5[$	-1 0 1 2 3 4 5 6	$c=\frac{7}{2}, r=\frac{3}{2}.$
-5 < x			
	$x \in]-\infty$; 2]		
		-3 -2 -1 0 1 2 3 4	
$5 > x \geqslant -2$			
			c = 2, r = 5, intervalle fermé

Exercice 2 Intervalles, intersection, réunion

2 points

Compléter le tableau suivant, (la première ligne sert d'exemple) :

	I	J	Représentation sur un axe gradué	$I \cup J$	$I \cap J$.	
a)	<i>I</i> = [2; 4[J=]-1;3]	-2 -1 0 1 2 3 4 5	$I \cup J =]-1 ;4[$	$I \cap J = [2;3]$	
b)	$I=]-\infty$;2]	J=[1;4]				
c)	I = [-1; 1[J=[2;3[

Exercice 3 Fonction: représentation graphique 3 points

Soit f la fonction définie par $f(x) = x^2 - 3$

On note C_f la représentation graphique de f (il n'est pas demandé de représenter la fonction)

- a) Le point A(1; -2) est-il un point de \mathcal{C}_f ? justifier.
- b) Le point B(-4; -19) est-il un point de \mathcal{C}_f ? justifier.
- c) Quelle est l'ordonnée du point C de \mathcal{C}_f d'abscisse $\frac{-1}{2}$? justifier.
- d) Quelles sont les abscisses de tous les points de \mathcal{C}_f d'ordonnée 1? justifier.

Exercice 4 Fonction: représentate Le graphique ci-contre représente une fonction		4 points
a) Quel est l'ensemble de définition de <i>g</i> ?	*	5
b) Déterminer par lecture graphique les images de –1 ? de 2 ?		4.
c) Déterminer par lecture graphique les antécédents de –3 ? de 2 ?	-5 -4 -3 -2	
d) Résoudre par lecture graphique l'équation $g(x) = 1$.		-2 -X
e) Résoudre par lecture graphique l'inéquation g	g(x) < 2	

DS2 2°4	Ce qui est affirmé sans preuve peut être nié sans preuve.	Euclide d'Alexandrie
NOM:	Prénom:	15 octobre 2014

Exercice 5 Calculatrice (ne pas oublier les (.) et encadrement, tableau de valeurs) 5 points 1) Voici trois nombres A, B et C.

Pour chacun de ces nombres, écrire tous les chiffres que vous lisez sur la calculatrice, puis, donner un encadrement d'amplitude 10^{-3} .

Nombres	Lecture sur la calculatrice	Encadrement d'amplitude 10 ⁻³
$A = \frac{\sqrt{3} - 1}{1 + \sqrt{2}}$		
$B = \sqrt{3} - \frac{1}{1 + \sqrt{2}}$		
$C = \sqrt{3} - 1 + \frac{1}{\sqrt{2}}$		

- 2) Soit la fonction f définie par $f(x) = x^2 5x + 2$
- a) Écrire sur la copie le calcul des images de 0 et de -1 par f:

(le résultat ne suffit pas)

l'image de 0 par f est

l'image de −1 par f est

b) À l'aide de la calculatrice, remplir le tableau suivant :

X	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9
f(x)									

Exercice 6 Mise en équation

3 points

Astrid a déjà trois notes de devoir de coefficient 1.

La moyenne de ces 3 notes est 11.

Il reste à faire un devoir qui aura pour coefficient 2.

Elle espère que sa moyenne après ce devoir sera au moins 13.

Ouelle note doit-elle avoir à ce dernier devoir ?

Prochain DS: DS3: mercredi 19 novembre 2013

DM4 à rendre au plus tard le mercredi 5 novembre 2014

31 page 29; 65 page 31; 3 page 234; 33 page 238