Classe: 2°4 DS6 Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie Prénom: jeudi 5 février 2015

Exercice 1 Vecteurs Relation de Chasles, somme de vecteurs

6 points

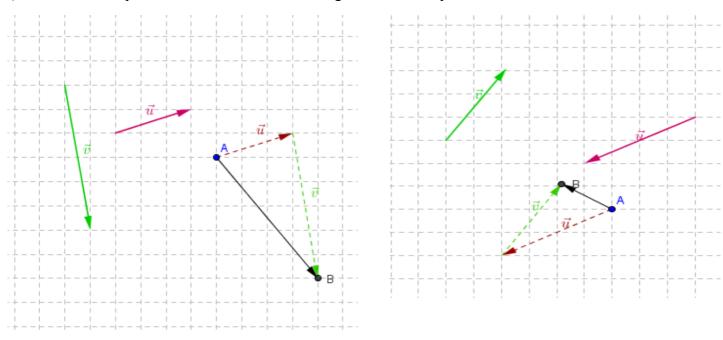
1) Compléter les égalités suivantes en utilisant la relation de Chasles :

a)
$$\overrightarrow{XT} + \overrightarrow{TZ} = \overrightarrow{XZ}$$

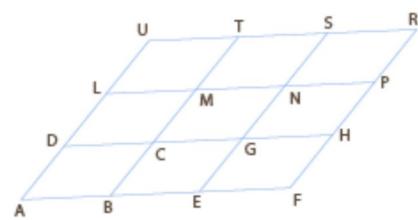
b)
$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$$

c)
$$\overrightarrow{ER} + \overrightarrow{RV} = \overrightarrow{EV}$$

2) Construire un représentant du vecteur $\vec{u} + \vec{v}$ d'origine A dans chaque cas :



3) En utilisant uniquement les points de la figure formée uniquement de parallélogrammes, trouver un vecteur égal aux sommes suivantes :



a)
$$\overrightarrow{AB} + \overrightarrow{GN} = \overrightarrow{AC}$$
 (ou tout autre vecteur égal à \overrightarrow{AC}) \overrightarrow{DM} , \overrightarrow{LT} , \overrightarrow{GP} ...

b)
$$\overrightarrow{LG} + \overrightarrow{BN} = \overrightarrow{LR} = \overrightarrow{DP} = \overrightarrow{AH}$$
.

c)
$$\overrightarrow{AG} + \overrightarrow{CE} + \overrightarrow{HS} = \overrightarrow{AN} = \overrightarrow{BP} =$$

d)
$$\overrightarrow{AN} - \overrightarrow{AB} = \overrightarrow{BN} = \dots$$

Classe: 2°4 DS6 Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie
Prénom: jeudi 5 février 2015

Exercice 2 vecteurs colinéaires

8 points

Dans cet exercice, on considère un repère $(0; \vec{i}, \vec{j})$.

1) Question de cours :

Le vecteur \vec{u} a pour coordonnées $\begin{pmatrix} X \\ Y \end{pmatrix}$ et le vecteur \vec{v} a pour coordonnées $\begin{pmatrix} X' \\ Y' \end{pmatrix}$.

À quelle condition, les vecteurs \vec{u} et \vec{v} sont-ils colinéaires? (Une seule des propriétés suivantes suffisait)

les vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si XY' = X'Y

ou encore

les vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si XY' - X'Y = 0

ou encore

les vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si, il existe un réel k tel que X' = kX et Y' = kY.

ou encore

les vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si, le tableau suivant est un tableau de proportionnalité :

X	Χ'		
Y	<i>Y</i> '		

2) Applications du cours :

a) Les vecteurs $\vec{u} \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -3 \\ 7,5 \end{pmatrix}$ sont-ils colinéaires ? Justifiez votre réponse.

Comme $2 \times 7,5 = (-3) \times (-5) = 15$, les vecteurs sont colinéaires.

Ou bien : Comme $2 \times \left(\frac{-3}{2}\right) = -3$ et $-5 \times \left(\frac{-3}{2}\right) = 7,5$, on a : $\vec{v} = \frac{-3}{2}\vec{u}$

b) Les vecteurs $\vec{u} \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} 16 \\ 40 \end{pmatrix}$ sont-ils colinéaires ? Justifiez votre réponse.

Comme $2\times40 = 80$ et $-5\times16 = -80$, les vecteurs ne sont pas colinéaires.

c) Déterminez le réel x sachant que les vecteurs \vec{s} $\begin{pmatrix} 2-x \\ 1 \end{pmatrix}$ et \vec{t} $\begin{pmatrix} 3+x \\ 4 \end{pmatrix}$ sont colinéaires.

x est solution de l'équation : $4(2-x) = 1 \times (3+x)$, soit : 5x = 5, donc : x = 1.

3) Vecteurs colinéaires et droites

Soient trois points A(1; 4), B(5; -1), C(-2; 1).

- a) Placer les trois points dans le repère à la fin de cet exercice et construire le parallélogramme *ABCD*. Voir construction
 - b) Calculer les coordonnées du vecteur \overrightarrow{AB} .

Classe: 2°4	DS6	Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie
Prénom :	Nom:	jeudi 5 février 2015

$$\overrightarrow{AB} \quad \begin{pmatrix} 5-1 \\ -1-4 \end{pmatrix} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}$$

c) Déterminer par le calcul les coordonnées du point D.

ABCD étant un parallélogramme, $\overrightarrow{AB} = \overrightarrow{DC}$,

on a alors:
$$\begin{pmatrix} x_C - x_D \\ y_C - y_D \end{pmatrix} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}$$

On résout :
$$\begin{cases} -2 - x_D = 4 \\ 1 - y_D = -5 \end{cases}$$
, soit :
$$\begin{cases} x_D = -6 \\ y_D = 6 \end{cases}$$

Les coordonnées de D sont (-6; 6).

d) Soit le point E de coordonnées (25 ; -27). Les points A, B, E sont-ils alignés ?

On a:
$$\overrightarrow{AE}$$
 $\begin{pmatrix} 25-1 \\ -27-4 \end{pmatrix} = \begin{pmatrix} 24 \\ -31 \end{pmatrix}$.

or,
$$\overrightarrow{AB}$$
 $\begin{pmatrix} 4 \\ -5 \end{pmatrix}$. Comme $-5 \times 24 = -120$ et $4 \times (-31) = -124$, les points A , B et E ne sont pas alignés.

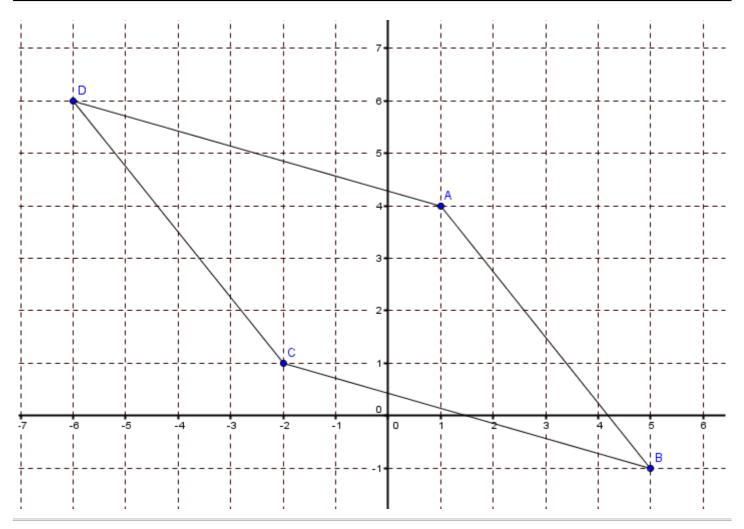
e) Soit M(x; y) un point de la droite (AB). Écrire une relation entre les coordonnées x et y.

Si $M(x; y) \in (AB)$ alors les vecteurs \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires.

$$\overrightarrow{AM}$$
 $\begin{pmatrix} x-1 \\ y-4 \end{pmatrix}$ et \overrightarrow{AB} $\begin{pmatrix} 4 \\ -5 \end{pmatrix}$ sont colinéaires si et seulement si $4(y-4) = -5(x-1)$

On peut écrire sous la forme : $y = -\frac{5}{4}x + \frac{21}{4}$.

Classe: 2°4 DS6 Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie Prénom: jeudi 5 février 2015



Exercice 3 Factorisation, signe d'une expression, inéquations 6 points

- 1) On considère l'expression $A(x) = (2x + 1)^2 (x + 3)^2$
 - a) Compléter la phrase suivante :

L'expression A(x) est la différence du carré de (2x + 1) et du carré de (x + 3).

b) En déduire la **factorisation** en produit de facteurs du premier degré de A(x)

Comme $a^2 - b^2 = (a + b)(a - b)$, on obtient:

$$(2x+1)^2 - (x+3)^2 = [(2x+1) + (x+3)][(2x+1) - (x+3)] = (3x+4)(x-2)$$

c) Résoudre l'inéquation $A(x) \ge 0$

On a donc : (3x + 4)(x - 2)

х	∞		$\frac{-4}{3}$		2		+∞
3 <i>x</i> +4		_	0	+	:	+	
x-2		_	:	_	0	+	
(3x+4)(x-2)		+	0	_	0	+	

"La différence entre le mot juste et un mot presque juste est la même qu'entre l'éclair et la luciole." *Mark Twain* 4/5 DS6_corrige.odt 05/02/15

Classe: 2°4	DS6	Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie
Prénom :	Nom:	jeudi 5 février 2015

les solutions de $A(x) \ge 0$ sont les réels de la réunion d'intervalles : $\left] -\infty; -\frac{4}{3} \right] \cup [2; +\infty[$

- 2) On considère l'expression B(x) = (x + 1)(3x 1) + (x + 1)(2 5x)
 - a) Compléter les phrases suivantes :

L'expression B(x) est la somme des termes (x + 1)(3x - 1) et (x + 1)(2 - 5x)

(x+1)(3x-1) est le produit des facteurs (x+1) et (3x-1)

- b) Donner la **factorisation** en produit de facteurs du premier degré de B(x)
- (x + 1) est un facteur commun aux deux termes de la somme

$$(x+1)(3x-1) + (x+1)(2-5x) = (x+1)[(3x-1) + (2-5x)] = (x+1)(-2x+1)$$

c) Résoudre l'inéquation $B(x) \ge 0$

X	$-\infty$		-1		<u>1</u> 2		+∞
x+1		_	0	+	:	+	
-2x+1		+	:	+	0	_	
(x+1)(-2x+1)		_	0	+	0	_	

les solutions de $B(x) \ge 0$ sont les réels de l'intervalle : $\left[-1; \frac{1}{2}\right]$.