Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

(Prendre des notes dans le cahier de cours)

I- Définition

I-1 Rappel

Écrire les inverses des nombres suivants:

nombre	1	-1	0,5	0,25	-0,25	0,7	$\frac{1}{3}$	11 7	$\sqrt{2}$	$\sqrt{3}+1$
son inverse										

Existe-t-il des réels qui n'ont pas d'inverse?Si oui, le(s)quel(s)?.....

Soit *x* un réel, son inverse est le réel

Le produit d'un réel par son inverse est égal à

Que peut-on dire des signes d'un réel et de son inverse?

I-2 Définition:

(Une définition s'apprend précisément. Chaque mot, chaque lettre, chaque symbole est important)

La fonction inverse est la fonction définie sur $]-\infty$; $0[\cup]0; +\infty[$ (noté aussi $\mathbb{R}\setminus\{0\}$ ou \mathbb{R}^*), qui, à un réel non nul, associe son inverse.

On note $x \mapsto \frac{1}{x}$ ou $t \mapsto \frac{1}{t}$ ou ...

II- Propriété: fonction impaire

II-1 Observation

On note f la fonction inverse

Trouver une relation entre f(-x) et f(x):

Remarque et définition:

On dit qu'une fonction f est une fonction impaire lorsqu'elle vérifie la propriété suivante:

Si $x \in E_f$ alors $-x \in E_f$ et f(-x) = -f(x)

Conséquence: la fonction inverse est une fonction impaire

II-2 Interprétation graphique d'une fonction impaire

(Prendre une feuille à carreaux)

Soit *f* une fonction impaire.

Dans un repère orthogonal, placer un point M quelconque. On suppose que M est un point de C_f d'abscisse x.

Quelle est l'ordonnée de *M*?

Construire le point M'(-x; f(-x)).

Que peut-on dire de *M* et *M* '?

Résultat:

Lorsqu'une fonction f est impaire, sa représentation graphique C_f dans un repère est

(La réciproque est vraie)

III- Sens de variation de la fonction inverse.

L'objectif du paragraphe est double :

- comprendre une méthode pour étudier les variations d'une fonction.
- l'appliquer à la fonction inverse.

III-1 Rappel:

Étudier les variations d'une fonction, c'est déterminer les intervalles où la fonction reste monotone (ne change

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

pas de variations). On étudie toujours les variations d'une fonction sur un intervalle. Conséquence: on doit étudier la variation de la fonction inverse d'une part sur
on cherche le de $f(b) - f(a)$.
III-3 Calculs: On note f la fonction inverse Soit $0 < a < b, f(b) - f(a) =$
Comme a
III-4 Résumé dans un tableau
$\begin{array}{c cccc} x & -\infty & 0 & +\infty \\ \hline \frac{1}{x} & & & & \\ \end{array}$
La double-barre signifie que la fonction n'est pas définie en 0. Cette double-barre est infranchissable
<u>III-5 À remarquer:</u>
Montrer sur un exemple que la phrase :"la fonction inverse est strictement décroissante" n'a pas de sens.
Compléter la phrase pour qu'elle ait un sens:
la fonction inverse est strictement décroissante

IV- Représentation graphique de la fonction inverse.

L'objectif du paragraphe est double :

- comprendre une méthode pour construire la représentation graphique d'une fonction
- l'appliquer à celle de la fonction inverse.

IV-1 Tableau de valeurs:

x	<u>1</u> 5	<u>1</u> 4	$\frac{1}{2}$	$\frac{4}{5}$	1	2	4	5
$\frac{1}{x}$								

IV-2 Graphique

IV-2-1- Représentation graphique

Faire la représentation graphique dans un repère.

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

IV-2-2- Définition

La représentation graphique dans un repère (O; I, J) de la fonction inverse est

une **hyperbole** de centre O(0;0) d'équation $y = \frac{1}{x}$

Les axes de coordonnées sont les asymptotes de cette hyperbole.

V- Quelques calculs- Fonctions homographiques

V-1- Somme, produit, inverse ...

f est la fonction inverse.

a et b sont des réels non nuls.

A-t-on l'égalité f(a + b) = f(a) + f(b)?

A-t-on l'égalité $f(3a) = 3 \times f(a)$?

V-2- Ensemble de définition

Quels sont les réels qui ont une image par g définie par : $g: x \mapsto \frac{2x+1}{x-2}$?

On note D_g cet ensemble.

Montrer que pour tout $x \in Dg$, $g(x) = 2 + \frac{5}{x-2}$

V-3- Fonctions homographiques

V-3-1 Définition:

Une fonction homographique est une fonction f telle que $f(x) = \frac{ax+b}{cx+d}$ avec a, b, c et d réels et c non nul.

(Une fonction homographique est le quotient d'une fonction affine par une fonction affine non constante)

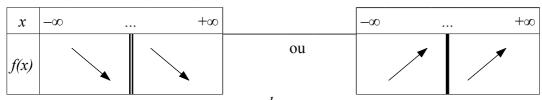
remarques:

f est définie pour les valeurs qui n'annulent pas le dénominateur, c'est-à-dire pour $x \neq \dots$

V-3-2- Propriétés

On peut démontrer les résultats suivants: (Résultats à reconnaître : pouvoir les appliquer sur des exemples (un exemple au VI-1))

1- On aura pour le tableau de variations :



- 2- On peut écrire $f(x) = \frac{a}{c} + \frac{k}{cx+d}$ (forme canonique qui permet de faire l'étude de f)
- 3- f est représentée par une hyperbole

VI- Utilisation de la fonction inverse

(Prévoir une feuille pour chercher et noter ...)

VI-1 Pour étudier certaines fonctions où intervient la fonction inverse.

Exemple: Étudier la variation de la fonction f définie par $f(x) = \frac{1}{x-2} + 3$ sur $]-\infty$; 2[, puis sur]2; $+\infty$ [.

Ce qui est affirmé sans preuve peut être nié sans preuve. Euclide d'Alexandrie

VI-2 Pour étudier certaines inéquations où intervient l'inverse d'un nombre

((l'utilisation d'un graphique est fortement conseillée)

Exemple: Résoudre dans IR

a)
$$\frac{1}{x} \geqslant \frac{1}{2}$$

b)
$$\frac{1}{x} > -\frac{2}{5}$$

c)
$$\frac{1}{x} \le 4$$

a)
$$\frac{1}{x} \ge \frac{1}{2}$$
 b) $\frac{1}{x} > -\frac{2}{5}$ c) $\frac{1}{x} \le 4$

VI-3 Pour encadrer l'inverse d'un nombre

VI-3-1 Encadrement de l'inverse d'un nombre

(l'utilisation d'un graphique est fortement conseillée)

Encadrer lorsque c'est possible le nombre $\frac{1}{x}$ (en justifiant)

a)
$$\frac{1}{5} \le x \le 2$$

a)
$$\frac{1}{5} \le x \le 2$$
 b) $-5 \le x < -\frac{3}{4}$

$$c) -2 \le x \le 4$$

VI-3-2 Encadrement de l'inverse d'une expression

Encadrer $\frac{1}{x+5}$ lorsque

a)
$$x \in [-3; 2]$$

b)
$$x \in [-10; -6]$$